Microprocessor
Course

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is assumed for
inaccuracies. Furthermore, such information does not convey to the

purchaser of the product described any license under the patent rights of
Motorola, Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser, EXORdisk, EXORtape and EXORterm are trademark of
Motorola Inc. :

Motorola inc. 1979
“All Rights Reserved’”

Printed in Switzerland — 28-B79/15.0

EUROPEAN MOTOROLA

DENMARK
Motorola A/S

Tel. (02) 88 44 55

FRANCE
Motorola Semiconducteurs S.A.
Headquarter
15-17, avenue de Ségur
75007 Paris
Tel. 551 50 61
Sales Office
42, avenue de La Plaine-Fleurie
38240 Meylan (Grenoble)
Tel. (76) 90 22 81

WEST GERMANY
Motorola GmbH, Geschaftsbersich Halblsiter
Headquarter
Minchner Strasse 18
8043 Unterfdhring
Tel. (089} 92481
Sales Offices
Hans Bockier:Strasse 30
3012 Langenhagen — Hannover

Tel. (0511) 77 20 37

Virnsbergerstrasse 43

8500 Nurnberg

Tel. (0911) 6 57 61
Stralsunder smsu 1

7032 Sindelf

Tel, (07031) 830 74/8 30 75
Abraham-Lincoln-Strasse 28
6200 Wiesbaden

Tel. (06121) 76 19 21

HOLLAND
Motorola B.V.
Emmalaan 41

Utrecht
Tel. (030) 51 02 07

ITALY
Motorola S.p.A.
Headquarter
Via Ciro Manom 1
20129 M
Tel. 738 61 11213

Sales Office

Via Portanova 10

40123 Bologna — Tel. 26 6905
Sales Office

Via Costantino Maes 68

00162 Roma — Tel. 8314746

NORWAY
Motorola A/B (Service Office)

Brugt. 1
Oslo 1 — Tel. (02) 41 91 40

SOUTH AFRICA
Motorola South Africa (Pty) Ltd.
P.O. Box 39586
Bramiey 2018
Tel. 7861184

SWEDEN
Motorola AB.
Virebergsvaegen
17140 Solna — Tel (08) 820295

SWITZERLAND
Motorola Scmu:onduclof Products S.A.
Alte Landstrasse 10
8702 Zollikon — Tel (01) 6556 56

SEMICONDUCTOR SALES OFFICES

UNITED KINGDOM

Motorpla Ltd.

Headquarter

York House, Empire Way
Wembley Middlesex

Tel. (01) 90288 36

Sales Office

10-12, Mount Street, Television House

Manchester M2 5WS, Lancs

Tel. (61) 83307 31/83307 34

Sales Office

Colvilles Road, Kelvin Estate

East Kilbride, Scotland

Tel. (3552) 39101

HEADQUARTERS EUROPEAN OPERATIONS

SWITZERLAND
Motorola Inc.
Semiconductor Products Group
16, chamln de Ia Voie-Creuse, P.O. Box 8
1211 Gen
Tel. (022) 33 5607

FRANCHISED MOTOROLA SEMI

AUSTRIA
Elbatex GmbH
Endresstrasse 54 — 1238 Wien
Tel. (222) 8855 11

BELGIUM
Diode Belgium
Rue Picard 202-204 — 1020 Bruxelles
Tel. (02) 428 51 05

DENMARK
Distributgren Interelko Aps
Hovedgaden 16 — 4622 Havdrup
Tel. (03) 3857 16

FINLAND
Field Oy
Veneentekijantie 18 — 00210 Helsinki 21
Tel. (80) 69225 77

FRANCE
Ballion Electronique
Zone Industrielle de Kerscao/Brest
29219 Le Relecq-Kerhuon — B.P. 16
Tel. (98) 28 03 03
Celdis S.A.
63, rue Charles-Frérot —
Tei. (01) 581 00 20
Ets. F. Foutrier S.A. (M-in Office)
Hul du Tro Glorie

t-en- Jarex (St-Etienne)

Tll (77) 746733

Ets. F. Foutrier S.A.

Avenue Laplace — Zone industrielle

13470 Carnoux

Tel. (42) 82 16 41

Feutrier lle de France

29, rue Ledru- Rellm — 92150 Suresnes

Tel. (01) 772

Ets. Gros S.A. (Mlm omc-)

13, rue Victor-Hugo —

59350 Saint. André-lez- Lwlla
Tel

Ets. Gros s.A.
14, avenue du Général-Leclerc — 54000 Nancy
Tel. (83) 3517 35
Ets. Gros S.A.
5, rue Pascal — 94800 Villejuif
Tel. (01) 678 27 27
S.CALB.S.A
80, rue d'Arcueil — Zone Silic
94150 Rungis
Tel. (01) 687 23 13
Sté Commerciale Toutélectric (Main Office)
15-17, Boulevard Bonrepos — 31008 Toulouse
Tel. (61) 621133
Sté. Commerciale Toutélectric
80-83, quai des Ouevnes ~ 33100 Bordeaux
Tel. (56) 86 50 3

94250 Gentilly

GERMANY
Aifred Neye Enatechnik GmbH lAb 1.1.1979)
Qui

EBV Elektronik Vertriebs GmbH
Myliusstrasse

6000 Frankfurt 1

Tel. (0611) 7204 16

EBV Elektronik Vertriebs-GmbH
A|QX!I\¢!Y§((I&S! 63
7000 Stu
Tel. (071 |) 24 74 81
Jormyn GmbH
Postfach 1180
6277 Camberg
Tel. (06434) 60 05

‘Miitron Muller & Co. KG
Bornstrasse 22

2800 Bremen
Tel. (0421) 31 04 85
RTG, E. Springorum GmbH + Co. (Main Office)

Tel. (0231) 6 49 51

RTG, E. Springorum GmbH+ Co.
Friedrich-Ebert Damm 112

2000 Hamburg 70
Tel. (040) 693 70 61/62

RTG, E. Springorum GmbH + Co.
Ungererstrasse 43

8000 Minchen 40
Tel. (089) 36 65 00

RTG, E. Springorum GmbH + Co.
Reutlingerstrasse 8

7000 Stuttgart-Degerloch

Tel. (0711) 76 64 28

RTG, E. Springorum GmbH + Co.
Mendelssohn-Bartholdy-Strasse 16
6200 Wiesbaden

Tel. (06121) 52 73 09

SASCO Vertrieb von elektronischen
Bauelementen GmbH (Main Office)
Hermann-Oberth-Strasse 16

8001 Putzbrunn b. Minchen

Tel. (089) 46 40 61/69

SASCO Vertrieb von elektronischen
Bauelementen

Postfach 3066

4005 Dissseldorf/Meerbusch 3

Tel. (02150) 14 33

SASCO Vertrieb von elektronischen
Bauelementen GmbH

Postfach 890214

3000 Hannover

Tel. (0511) 86 25 86

SASCO Vertrieb von elektronischen
Bauelementen GmbH

Lounznv S"asse 15

8500 Ni

Tel. IOSII) 204| 52

SASCO Vartrieb von elektronischen
Bauelementen GmbH
Stafflenbergstrasse 24 — 7000 Stuttgart 1
Tel. (0711) 24 45 21

SPOERLE Ellclromc (Ab 1.1.1979)
13 — 6072 Dreieich b. Frankfurt

Schillerstrasse 14 — D-2
Tel. (04) 106 61 21
Distron oHG
Beheimstrasse 3
1000 Berlin 1
Tel. (030) 342 10 41/45
EBV Elektronik Vertriebs-GmbH (Main Office)
Gabriel-Max-Strasse 72
8000 Munchen 90
Tel. (089) 64 40 55
EBV Elektronik Vertriebs GmbH
1n der Meineworth 9
3006 Burgwebel 1 / Hannover
Tel. (051) 39 45 70
EBV Elektronik Vertriebs-GmbH
Oststrasse 129
Dusseldorf
Tel. (0211) 8 48 46

Tel. (06(03) * 3041

Technoprojekt (Main Office)
Heinrich-Ebner-Strasse 13
7000 Stuttgart — Bad Cannstatt
Tel. (0711) 56 17 12

Technoprojekt
Ostring 150 — 6231 Schwalbach/Ts
Tel. (06196) 8 21 00

GREECE
Macedonian Electronics Ltd.
Charilaou — P.0. Box 240 — Thessaloniki
Tel. 30 68 00

Macedonian Electronics Ltd.

Lioyd George 10 — Athens
Tel. (21) 360 95 71

CONDUCTOR DISTRIBUTORS

HOLLAND
B.V. Diode
Hollantiaan 22 — Utrecht
Tel. (030) 8842 14
Manudax Nederland B.V.
Meerstraat 7
5473 2G Heeswijk (N.B.) — P.O. Box 25
Tel. (41) 39 12 52

HUNGARY
Interag Co., Ltd.
Xl|l Ra]k Laszlou 11 — P.O. Box 184
T 5593 40

IRAN
Milcom LTD, Motorola Building
Niloo Street, Vanak Square — Teheran
Tel. 66 12 14/15

a S.p.A. (Main Office)
Via F 1l Gracahi 36 - 20082 Cinisello Balsamo (M1)
Tel. (02) 6120041-2-345

Celdis Italiana S.p.A.
Via Lorenzo 1l Magnifico 109 — 00162 Roma
Tel. (06) 42 38 55

Celdis It-ll
Via Tur 50055 Castenaso (Bologna)
Tel. (051) 78 80 78

Caldis Italiana S.p.A.

Via Mombarcaro 96 — 10136 Torino

Tel. (11) 359312

Celdis S.p.A.
Via Ognissanti, 83 — 35100 Padova
Tel. (049) 2 68 02
Cramer Italia S.p.A. (Main Office)
Via Cristoforo Colombo 134 — 00147 Roma
Tel. (06) 51 79 8| 2-3-4-5-6-7
Cramer Italia S.p.
Via S, Simpliciano 2 — 20121 Milano
Tel. (02) 80 93 26
Cramer Italia S.p.A.
Via Umberto 1° 59 — 35100 Padova
Tel. (049) 2 5. 37
Cramer Itali
Via Malta 5 — 40135 Bologna
Tel. (051) 42 28 90
Cramer Italia S.p.A.
Corso Traiano 28/\5 ~10135 Torino
Tel. (011) 619 20
Silverstar Ltd. S.|
Vva dei Gracchi 20 20146 Milano
Tel. (02) 49 96
Silverstar Ltd. S.p.
Via Pamelln 30 00193 Roma
Tel. (06) 84
Silverstar ud. Sn.k
Piazza Adriano 9 — 10139 Torino
Tel. (011) 44 32 75/6 — 44 23 21

NIGERIA

14, Alhaji Bashorun Street
SW Ikoyi — P.O. Box 1896 — Lagos
Tel. 5 66 29

NORWAY
Ola Tandberg Elektro A/S
Skedsmogatan 26 — Oslo 6
Tel. (02) 19 70 30

POLAND
PHZ Transpol S.A. (Intraco Building)
UI. Stawki 2 — 00-950 Warsaw 1
Tel. (004822) 39 50 79

PORTUGAL
Equipamentos de Laboratorio LDA

Rua Pedro Nunes 47 — Lisbon 1
Tel. 97 02 51

SOUTH AFRICA
L’Electron
704 Main Pretoria Road, Wynberg Tul.
P.0. Box 10544, Johannesburg 2000
Tel. 40 62 96

SPAIN
Hispano Electronica S.A. (Mlm Office)
Poligono Industri; ti
Apartado de Correos 45 — Alcorcén (Madrid)
Tel. (01) 619 41 08
Hispano Electronica S.A.
Figols, 27-29
Barcelona 14 — Tel. 259 05 22/23

SWEDEN
Interelko AB.
Sandsborgsvigen 5
13233 Erede Yol (08) 49 25 05
AB Gésta Biickstrom
Alstromergatan 22 — Box 12009
10221 Stockholm
Tel. (08) 54 10 80

SWITZERLAND
Elbatex AG
Alb. Zwyssig-Strasse 28 — 5430 Wettingen
Tel. (056) 26 56 41
Omni Ray AG
Du'nurstrasst 55 8008 Zurich
Tel. (01) 34 07

TURKEY
ERA Elektronik Sanyi Ve Ticaret A.S.
Ankara Irtibat Burosu
Gazi Mustapha Kemal Bul
KAT4D79 VenluhlrIAnkara —~ Tel. 2549 33

UNIYED KINGDOM

- et
Oldham, Lanés OLOGLF
Tel. (061) 652 04 31
Caldis Ltd.

37-39 Loverock Road
Reading, Berks, RG3, 1ED

Tel. (0734) 585 171

Cramer Components Ltd

Hawke House Green Street

Sunbury on Thames, Middlesex, England
Tel. (9327) 8 56 77

Crellon Electronics Ltd.

380, Bath Road

Slough, Berks SL1 6JE

Tel. (06286) 6 36 11

ITT Eloctronic Services

Edinburgh Way

Harlow, Essex CM20 (2DF)

Tel. Harlow (0279) 26 777

Jermyn Industries

Vestry Estate — Sevenoaks, Kent

Tel. (7320511 74

Macro-Marketing Ltd.

396, Bath Road

Slough, Berks SL1 6JD

Tel. (06286) 630 11

YUGOSLAVIA
Elektrotehna Liubliana
Export-Impo
Thova 51 = P.0. Box 34-1
61000 Ljubljana
Tel. (61) 320241
Elektrotehna Ljubljana
Filiala Beograd
Marsala Tita 6/1
11000 Beograd
Tel. (011) 69 69 24

FRANCE
Motorola Semiconducteurs S.A.
Canto Laouzetto — Le Mirail
31023 Toulouse CEDEX
Tel. (61) 40 11 88

EUROPEAN SEMICONDUCTOR FACTORIES

GERMANY

Motorola GmbH
Minchner Strasse 18
8043 Unterfohring
Tel. (089) 92 481

UNITED KINGDOM
Motorola Semiconductors Ltd.
Colvilles Road, Kelvin Estate
East Kilbride/Glasgow (Scotland)
Tel. (3552) 39 101

—_—3

abie of contents

Page
1. NumberSystems i, 5
2. MicroprocessingUnit 17
3. Memory e e e e e e e e e e 39
4. Peripheral Interface Adapter 45
5. ACIA . . e e e e e e e 67
6. AddressingModes, 83
7. Assembler Techniques 93
8. InstructionSett 139
9. Program Problems 151
0. ExamplePrograms, 171
1. System Configuration 211

Number Systems

Number System N-1

NUMBER SYSTEM

The Motorola 6800 Microprocessor is an 8-bit system. It has 8 data lines, 16
address lines, and functions with 8- and 16-bit registers. It is, therefore, convenient to
use the Hexadecimal Number System when interfacing with the M6800 system.
However, before concentrating on the Hexadecimal Number System, a discussion of
several other number systems would be beneficial.

The most familiar number system is Base 10 or Decimal—i.e.,0,1,2,3,4,5, 6, 7,
8, and S—since this is the system in general use. What does a typical base-10 number
represent? Take, for example, 2743. The number 2743,, really represents 3 x 10° +
4 x 10" + 7 x 10% + 2 x 10%; and, as can be seen, the least significant digit (LSD) is 3
and the most significant digit (MSD) is 2.

In digital computers, numbers are represented in base 2 or binary form, i.e., 1's
and 0’s. One method of converting base 10 numbers to binary numbers is known as
"repeated division by 2”. Using 47,, for example:

23 _ .
2/4_7 R =1 LSBit

11 -
2/23 R=1

5 R=1
2/;_T 101111,
2/5— R=1

1 -
2/7 R=0

0 _ .
2/T R =1 MSBit

Converting 101111, back to a base-10 number, we have:

101111, = 1x2% + 1x2! + 1x2% + 1x23 + 0x2* + 1x2°
=1x1+1x2+1x4+1x8+0x16 + 1x32
=1+2+4+8+0+32
=47,

In general, converting from a number in any base to a number in base 10 is
accomplished as follows:

(AgB® + A;B' + A;B2 + A;B3 + A4B*+A,BN)
where B is the base of the number system and A is the particular digit in the original
number corresponding to its position to the left of the decimal point. On the example

just completed,(101111).

Ao =1,A;=1,A,=1,A;=1,A, =0,and As =1 and B = 2 (base 2).

N—2 Number System

Another number system used with digital computers is octal, or base 8, since octal
is a more convenient way of representing binary 2. To illustrate, the conversion of 61
in base 10 to a number in base 8 and a number in base 2 using the method of repeated
division is shown below:

7
8ng R=5 LSD 75,
8/7 R=7 MSD (Octal)
30
2/61 R=1 LSB
15
2/30 R=0
7
2/;_5 R=1 111101,
2T R=1 (Binary)
1
2/3 R=1
0
2/T R=1 MSB

As a proof that 755 = 111101,, convert each digit of 75 base 8 to base 2 by
continuous division.
Convert 75 to base 2:

3

2/T R=1
1

2/3 R=1 111,
0

2/17 R=1

Convert 54 to base 2:

2

2/5 R=1
1

2/2 R=0 101,
0

2/7 R=1

This demonstrates that an octal number (base 8) can be used to easily represent a
string of binary bits (base 2). Therefore, 755 = 111101, which is the same pattern
of 1s and Os as derived by converting from base 10 to base 2.

As previously mentioned, the M6800 Microprocessor utilizes 8- and 16-bit regis-
ters. But when trying to use the octal number system, there is a slight problem. Since
in octal each digit represents 3 binary bits, and 8 and 16 bits cannot be selected
evenly into groups of 3. This is resolved with the hexadecimal number system. Hexa-
decimal is a base-16 number system and can be handled in exactly the same manner

Number System N-3

as base 8 or base 2. In Hexadecimal, four bits (in binary) represent one Hexadecimal
number. Thus, an 8-bit register can be represented by a 2-digit hex number. To illus-
trate, assume there exists the binary number 01100111 in an 8-bit register. If this
bit pattern is divided into two 4-bit groups of 0110 and 0111, then the hex represen-
tation would be 67,¢. The following is offered as a proof:

1100111, =1x2% +1x2' + 1x2% +0x23 + 0x2% + 1x25 + 1x2% +0x2”

)
MSB LSB=1+2+4+0+0+32+64+0

= 10310
and LS Digit (LS half-byte)
6716 =7x16° +6x 16!
MS Digit
(MS half-byte)
=7x1+6x16
=7+96
=103,
Therefore, 67,6 =01100111, =103,

From this simple example, one might wonder how hexadecimal digits (base
16) are represented for numbers above 9. The following table shows the solution
to this dilemma.

Base 10 Base 16
(Decimal) (Hexadecimal)

N PPN N ©CONOODWN O
TMUOUOWPOONODADWN=O

Table |

N—4 Number System

To convert any decimal (base 10) number to hexadecimal (base 16), again use
the repeated division method. As an example, convert 1023, to hexadecimal.

63
16/1023 R=15,, = F* LSD
3
16/?)_3 R=15,,=F 3FF,,
16/3 R=3 MSD

therefore, 1023,, = 3FF 4. As a check, convert 3FF ;¢ back to a base 10 number.
3FF,, =15x16° + 156x 16! + 3x16?
=15x1+ 15x 16 + 3x256
=15+ 240+ 768
=1023;

To further elaborate on the relationship between hexadecimal and binary, convert
1023,, to binary and then back to hexadecimal. First, 1023, to binary:

511
2/1023 R=1 LSBit
255
2/511 R=1
127
2/255 R=1
63
2/127 R=1

31

2/63 R=1 1M1111111,
15

2/37 R=1
7

2/15 R=1

3
2/7T R=1
1
2/3 R=1

0
2/17 R=1 MSBit

Now, arranging this number into three groups of four bits each and then converting
each group to its hexadecimal counterpart, the result is 1023,,, represented in hexa-
decimal 1111111111, = 0011 1111 1111, = 3FF,,. Where 0011, = 3, and 1111, =
F.¢ (from Table 1).

In summary, remember that each hexadecimal (base 16) digit is a representation
of 4 binary bits. It is easy to convert from hex to binary and binary to hex. For
convenience, a limited conversion chart follows.

*From Table I.

Number System N-5

CONVERSION CHART

Decimal Octal Hexadecimal Binary
0 0 0 0000 0000
1 1 1 0000 0001
2 2 2 0000 0010
3 3 3 0000 0011
4 4 4 0000 0100
5 5 5 0000 0101
6 6 6 00000110
7 7 7 00000111
8 10 8 0000 1000
9 11 9 0000 1001
10 12 A 0000 1010
11 13 B 0000 1011
12 14 C 0000 1100
13 15 D 0000 1101
14 16 E 0000 1110
15 17 F 0000 1111
16 20 10 0001 0000
17 21 11 0001 0001
18 22 12 0001 0010
19 23 13 0001 0011
20 24 14 0001 0100
21 25 15 0001 0101
22 26 16 0001 0110
23 27 17 0001 0111
24 30 18 0001 1000
25 31 19 0001 1001
26 32 1A 0001 1010
27 33 1B 0001 1011
28 34 1C 0001 1100
29 35 1D 0001 1101
30 36 1E 0001 1110
31 37 1F 0001 1111
32 40 20 0010 0000
33 41 21 0010 0001
34 42 22 00100010
35 43 23 0010 0011
36 44 24 00100100
37 45 25 0010 0101
38 46 26 00100110
39 47 27 00100111
40 50 28 0010 1000

10

N—6 Number System

Two’s Complement

The M6800 system does not do direct subtraction, so the method of 2's com-
plement addition is used to accomplish the subtraction. The 2's complement of any
binary number is its additive inverse. That is, a binary number plus its 2’s complement
always equals zero. Or,

11011011
+ 00100101 2's complement of 11011011

00000000

How is the 2’s complement of a binary number computed? There are several methods.
One way of calculating the 2's complement is to take the number to be converted,
invert all the digits, then add one.

For example, find the 2's complement of 01011011. (91,,)

First, invert 01011011
Equals 10100100
Add 1 + 1

10100101

Therefore, 10100101 is the 2's complement of 01011011.
The following are examples of subtraction by the method of 2's complement
addition:

1. Given 61-12 =7 (base 10), or

Binary Notation. Hex Notation
61= 00111101 3D
-12 —-00001100 -0C

But to do the subtraction, first convert 00001100 (12,,) to a 2's complement number.

Therefore, given Binary Notation Hex Notation
00001100 ocC
a. Invert 11110011 F3
b. Add + 00000001 +01
11110100 2's complement F4

So the subtraction becomes 2's complement addition

00111101 3D
+ 11110100 + F4
ans 00110001 ans 31
As a check
6110
- 125

=49,, =00110001, = 31,4

11

Number System N-7

2. Given 61-2=7? (base 10)

Binary Notation Hex Notation

61 00111101 3D

-2 00000010 -02

Doing the 2’s complement addition

Binary Notation Hex Notation

00111101 3D

+11111110* FE**
ans 00111011 ans 3B

For further information see page 1-21 of the M6800 Microprocessor Applications
Manual

*2's complement of 00000010
**Hex notation of 2's complement

12

Number System N-—8

DECIMAL
+127

8-BIT 2'S COMPLEMENT

BINARY
0111 111

0000 0010
0000 0001
0000 0000
1Mminnm
11111110
.
.

1100 0000

.

.

.
1000 0001
1000 0000

13

HEXADECIMAL
7F

Number System N 9

Homework — Number Systems

Convert the following base 10 numbers to base 2 and base 16. Prove each base 2
and base 16 number is equal to its original base 10 number.

Decimal Binary Hexadecimal
a) 92,
b) 144,,
C) 4091 10
d) 254,
e) 256,
f) 64,522,
g) 2000,

Convert the following decimal numbers to 8-bit 2’s complement representation.

h) -174
i) +25,
) -5

k) -128

Turn this page over to check your answers.

14

N—10 Number System

a)
b)
c)
d)
e)
f)
q)

Decimal

92
144
4091
254
256
64522
2000

Decimal

-17
+25
-5
-128

Answers
Binary Hexadecimal
1011100 5C
10010000 90
111111111011 FFB
11111110 FE
100000000 100
1111110000001010 FCOA
11111010000 7D0

8-Bit 2's Complement Representation
11101111
00011001

11111011
10000000

15

MPU

Microprocessing Unit (MC6800) MPU-—1

MICROPROCESSING UNIT (MC6800)

Introduction

The Motorola M6800 Microcomputer System of standard LSI (Large Scale Integration)
devices permits the systems designer to configure and connect a total system with
a minimum amount of time and effort. The MC6800 Microprocessing Unit (MPU)
forms the nucleus of the system. LSI circuits available which may be used to configure
a total system in conjunction with the MC6800 MPU include: 7) MCM6810 Random
Access Memory (RAM), 2) MCM6830 Read Only Memory (ROM), 3) MC6821 Peri-
pheral Interface Adapter (PIA), and 4) MC6850 Asynchronous Communications
Interface Adapter (ACIA).

The MPU communicates with the rest of the system via a 16-bit address bus and
an 8-bit data bus. The 16-bit address bus provides the MPU with the capability of
addressing up to 64K. The 8-bit data bus is bidirectional in that data is transferred
both into the MPU or out of the MPU over the same bus. A read/write (R/W) line is
provided to allow the MPU to control the direction of data transfer. Since the same bus
is used both for data into the MPU and out of the MPU, a separate 8-line bus is saved.

Other features of the M6800 system include a single +5 volt supply, operation
at clock rates from 100 kilohertz to 1 megahertz, plus hardware and software
interrupt.capability.

MPU ADDRESS BUS
(16 LINES)

DATA BUS
__L___[_, /" (8 LINES)

RAM ROM PIA ACIA

D1526

MICROPROCESSING UNIT (MC6800)

The nucleus of the M6800 Microcomputer Family is the microprocessing unit
(MPU). The MPU is enclosed in a 40-pin package as shown on the following page.

MPU—2 Microprocessing Unit (MC6800)

GROUND @—
HALT =
PHASE 1 CLOCK -s=

(iRQ) INTERRUPT REQUEST -
(VMA) VALID MEMORY ADDRESS <e—|
(NM1) NON-MASKABLE INTERRUPT -
(BA) BUS AVAILABLE —=—

+5 VOLT POWER @

ADDRESS A6 e
LINES <

A7 -
A8 —-—f
A9 =
A10 ~=—

-]

kAH

le RESET (RES)

ke THREESTATE CONTROL {TSC)
|~ NOT USED

le PHASE TWO CLOCK

le DATA BUS ENABLE (DBE)

NOT USED
l—= READ/WRITE LINE (R/W)
les DO
o= D1
- D2 A

cc - D4

@ 3 x
I H I>

> A5 \& ADDRESS
LINES

- GROUND

Features included in the MPU are:

TR1017

System clock range of 100 kilohertz to 1 megahertz

1. Two accumulators (A and B)

2. Oneindex register (X)

3. One program counter register (PC)

4. One stack pointer register (SP)

5. One condition code register (CC)

6. 72 instructions

7. Six addressing modes

8.

9. Program interrupt capability
ACCUMULATORS

The MPU contains 2 accumulators designated A and B. Each accumulator is 8 bits
(one byte) long and is used to hold operands and data from the arithmetic logic unit.

INDEX REGISTER

The index register (X) is a 16-bit (2 byte) register which is primarily used to store
a memory address in the indexed mode of memory addressing. The index register may
be decremented, incremented, and stored.

19

Microprocessing Unit (M6800) MPU-—-3

PROGRAM COUNTER

The program counter (PC) is a 16-bit register that contains the address of the next
byte to be fetched from memory. When the current value of the program counter is
placed on the address bus, the program counter will be incremented automatically.

STACK POINTER

The stack pointer (SP) is a 16-bit (2 byte) register that contains a beginning
address, normally in RAM, where the contents of the MPU registers may be stored
when the MPU has other functions to perform such as an interrupt or a Subroutine.
The address in the stack pointer is the starting address of sequential memory locations
in RAM where MPU contents of the registers will be stored. The contents of the MPU
will be stored in the RAM as follows:

Stack Point Address : contents of PCL
Stack Pointer Address—1 contents of PCH
Stack Pointer Address—2 contents of XL
Stack Pointer Address—3 contents of XH
Stack Pointer Address—4 contents of A
Stack Pointer Address—5 contents of B
Stack Pointer Address—6 contents of CC

After the contents of each register is stored on the stack, the stack pointer will be
decremented. When the stack is unloaded (contents of registers restored), the contents
of the last register on the stack will be the first register that is restored.

CONDITION CODE REGISTER (CC)

The condition code register is an 8-bit register. Each /individual bit may be set or
cleared by execution of an instruction. To see how each instruction affects the condi-
tion code register, refer to the M6800 programming manual. This register is used by
the conditional branch instructions. Bits 6 and 7 are not used and remain at logic ““1"".

Carry-Borrow For addition, the carry-borrow condition code (C) in the zero-bit
position, represents a carry. This bit gets set (C = 1) to indicate a carry,
and is reset (C = 0), if there is no carry.

Overflow The V-bit (bit 1) of the condition code register is set (V = 1) when
two’s complement overflow results from an arithmetic operation, and is
reset (V = 0), if two's complement overflow does not occur.

Zero The Z-bit (bit 2) of the condition code register is set (Z = 1), if the
result of an arithmetic operation is zero, and is reset (Z = 0), if
the result is not zero.

20

MPU—4 Microprocessing Unit (M6800)

CONDITION CODE REGISTER

H

5

| N
4 3

\ Cc
2 1 0

L CARRY/BORROW

OVERFLOW (2'S COMP.)
e 7ZERO RESULT

INTERRUPT MASK

HALF-CARRY (b3 ~bg)

BITS SET AS A RESULT OF PREVIOUS OPERATION!

ABA: A= 1000 1000 H=1,2=0
B= 1000 1000 C=1,N=0
V=1
DECA A= 0000 0001 A= 0000 0000 Z=1,N=0
LDA A =$80 A= 1000 0000 N=1,Z2=0,V=0
COM A A= 1000 0000, A= 0111 1M N=0,V=0,C=1,2=0
OR DEC A N =0,V =1,C=UNCHANGED, Z =0
LA
ABA A= 10000010 =-126q¢ A+B = E]°°°°°1°° ;. V=1,2=0
B= 1000 0010 = -1264¢ = +410 C=1,N=0
H=0

Negative The N-bit (bit 3) of the condition code register is set (N = 1), if bit 7
of any operation is set (equal to 1). The N-bit is reset (N = 0), if bit 7 of
any result is equal to 0.

Interrupt If this bit is set (I = 1), IRQ interrupts are inhibited. If | = 0, the proces-

Mask sor may be interrupted by IRQ being in the low state. The | bit is set
via SEI instruction or by an interrupt occurring (IRQ, NMI, or SWI).
This bit is cleared with RTI (assuming | bit was clear before interrupt)
or CLI.

Half-Carry The half-carry bit H (bit 5) of the condition code register is set (H = 1)
during execution of any of the instructions ABA, ADC, or ADD, if
there is a carry from bit position 3 to bit position 4. The half-carry is
reset (H = 0) during these operations, if there is no carry from bit
position 3.

NOTE: The information the condition code register holds is the results of the

A+B= [f]\oom 0000

TR1022

instruction that last affected the condition code register.

21

READ/WRITE (R/W)

VALID MEMORY
ADDRESS (VMA)

DATA BUS ENABLE
(DBE)

INTERRUPT
REQUEST (IRQ)
(Level Sensitive Pin)

PHASE ONE (¢1) AND
PHASE TWO (¢2)
CLOCKS

RESTART (RES)

Microprocessing Unit (M6800) MPU—5

MPU Signal Descriptions

This output line is used to signal all devices external to
the MPU that the MPU is in a read state (R/W = high) or
a write state (R/W = low). The normal standby state
of this line when no external devices are being accessed
is a high state. This line is three state. When three state
control goes high, this line enters the high-impedance
mode.

This output line (when in the high state), tells all devices
external to the MPU that there is a valid address in the
address bus. This signal /s not three state.

This signal will enable the data bus drives when in the
high state. This input is normally the phase 2 (¢2) clock.
During the high state, it will permit data to be output
during a write cycle. During an MPU read cycle, the data
bus drives will be disabled internally.

This input requests that an interrupt sequence be
generated. The processor will wait until it completes
the current instruction that is being executed before it
recognizes the request. At that time, if the interrupt
mask bitin the condition code register is not set (interrupt
masked), the machine will begin an interrupt sequence.
The index register, program counter, accumulators, and
condition code register are stored on the stack. Next the
MPU will respond to the interrupt request by setting the
interrupt mask bit high so that no further interrupts
may occur. At the end of the cycle, a 16-bit address will
be loaded that points to a vectoring address which is
located in memory locations n-6 and n-7. Where n is the
highest ROM address. An address loaded at these loca-
tions causes the MPU to jump to an interrupt routine in
memory.

These two pins are used for a two-phase, non-overlapping
clock that runs at the Vpp voltage level. These clocks
run at a rate up to 2 MHz for MC68B00.

This input is used to start the MPU from a power-down
condition, resulting from a power failure or an initial
start-up of the processor. If a positive edge is detected
on the input, this will signal the MPU to begin the
restart sequence. This will restart the MPU and start
execution of a routine to initialize the processor. All
the higher order address lines will be forced high.

22

MPU—6 Microprocessing Unit (M6800)

7.

8.

9.

NONMASKABLE
INTERRUPT (NMI)
(Edge Sensitive Pin)

GO/HALT (G/H)

BUS AVAILABLE
(BA)

For the restart, the last two memory locations in the
last ROM (n and n-1) will be accessed, whereby an
address is stored which is the address to be loaded in the
program counter which tells the processor where pro-
gram execution is to begin.

This input requests that a nonmask-interrupt sequence
be generated within the processor. As with the Interrupt
Request signal, the processor will complete the current
instruction that is being executed before it recognizes
the NMI signal. The interrupt mask bit in the condition
code register has no effect on NMi. However, NMi does
set the Interrupt Mask bit.

The index register, program counter, accumulators, and
condition code register are stored away on the stack.
At the end of the cycle, a 16-bit address will be loaded
that points to a vectoring address which is located in
memory locations n-2 and n-3. An address loaded at
these locations causes the MPU to jump to a non-
maskable interrupt routine in memory.

When this input is in the high state, the machine will
fetch the instruction addressed by the program counter
and start execution. When low, all activity in the
machine will be halted. This input is level sensitive. In
the halt mode, the machine will stop at the end of
instruction. Bus Available will be at a logic 1" level
Valid Memory Address will be at a logic “0" and all
other three-state lines will be in the three-state mode.

The halt line must go low with the leading edge of phase
one to insure single instruction operation. If the halt
line does not go low with the leading edge of phase one,
one or two instruction operations may result, depending
on when the halt line goes low relative to the phasing
of the clock.

The Bus Available signal will normally be in the low
state. When activated, it will go to the high state indi-
cating that the MPU has stopped and that the address
bus is available. This will occur if the Go/Halt line is in
the halt (low) mode or the MPU is in a “‘wait’’ state as
the result of some instruction such as the WAl instruction.

23

10. THREE-STATE
CONTROL (TSC)

11. ADDRESS BUS
(A@/A15)

12. DATABUS

(D@/D7)

Microprocessing Unit (M6800) MPU—7

This input causes all of the address lines and the Read/
Write line to go into the off or high-impedance state. The
Valid Memory Address and Bus Available signals will be
forced low. The data bus is not affected by TSC and has its
own enable (Data Bus Enable). In DMA applications, the
Three-State Control line should be brought high on the
leading edge of the Phase One Clock. The ¢1 clock must be
held in the high state for this function to operate properly.
The address bus will then be available for other devices to
directly address memory. Since the MPU is a dynamic device,
it must be refreshed periodically, or destruction of data
will occur.

Sixteen pins are used for the address bus. The outputs are
three-state bus drivers capable of driving one standard TTL
load and 90 pF at 2 megahertz. When the output is turned
off, it is essentially an open circuit. This permits the MPU
to be used in DMA applications.

Eight pins are used for the data bus. It is bidirectional, trans-
ferring data to and from the memory and peripheral devices.
It also has three-state output buffers capable of driving one
standard TTL load and 130 pF at 2 megahertz.

Now that we have talked about the pins of the MPU package, we will talk about
the “heartbeat’’ of the system—the clock.

The MPU Clock

The MPU clock driver must meet the minimum and/or maximum criteria. These
criteria are explained by the table accompanying the timing waveform. (See MPU—10.)
The information to remember is that on the falling edge of ¢1, the program counter is
advanced, and, on the falling edge of ¢2, the data is latched into the MPU.

1 2 3 4 5
Program
Memory Opcode/ Addressing
Address Data Comments Modes Mnemonic
1000 86 LDA A with Immediate LDA A #3$5
1001 05 Hex 05
1002 D6 LDA B with Direct LDA B $F1
1003 F1 the contents of F1=04 (hex)
1004 1B Add contents of Accum B Accumulator ABA

to contents of Accum A
and store in A

24

Microprocessing Unit (M6800) MPU-—8

Up to this point we have physically described the microprocessor, i.e., the accu-
mulators and registers. We will now explain how this microprocessor works. This will
be easier if we use a small program to trace the flow of data.through the MPU system.

The program shown on MPU—7 will be used; and, in conjunction with MPU—-8, a
description of the operation of the MPU will be described.

The program shown above is divided into 5 columns. Column 1 is the Program
Memory Address column. Here we show the address locations where the program is
stored. Column 2 contains the instruction opcode or data. This information is in
hexademical notation. Column 3 is a comment column to aid you in understanding
what task is to be performed. Column 4 describes the addressing mode used. More
information is contained in the addressing mode section. The fifth column gives the
mnemonic for the particular instruction used.

When Phase 1 (¢1) goes high, the contents of the program counter are transferred
to the address bus. While this action is taking place, VMA will go to a logic 1 indicating
a valid address. On the falling edge of ¢1, the program counter will be incremented (if
required) by one. When Phase 2 (¢2) goes high, data is placed on the data bus; and,
during the falling edge of ¢2, the data is latched into the MPU. This sequence occurs
every time the MPU addresses a memory location and data is moved.

Let us return to the program and begin with ¢1 going to a logic 1. The contents
of the program counter (we will assume to be 1000 hex)* will be transferred to the
to the address bus. ¢1 goes low and the program counter is incremented to 1001.
Memory location 1000 has been selected; and, when ¢2 goes to a logic 1, its contents
will be transferred to the data bus. Looking at our program on MPU—7, we see that
the data stored in memory location 1000 is 86. Therefore, 86 is the data transferred
to the data bus. Again, during the falling edge of ¢2, the data on the bus is latched
into the MPU.

*All addresses will be given in hexademical notation.

PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

ACCUMULATOR A

>

ACCUMULATOR B

XH INDEX REGISTER

PCH PROGRAM COUNTER

SPH STACK POINTER

mEmEmE

CONDITION CODES
REGISTER

‘i
i
]
]
]
g

[(TFTTE

\—— OVERFLOW
L ZERO

" NEGATIVE

L INTERRUPT

HALF CARRY (FROM BIT 3)

TR1019

ABA
ADC
ADD
AND
ASL
ASR

BCC
BCS
BEQ
BGE
BGT
BHI

BIT

BLE
BLS
BLT
BMI

BNE
BPL

BRA
BSR
BVC
BVS

CBA
CLC
cLi
CLR
CLv
cmp
com
CPX
DAA
DEC
DES
DEX

EOR
INC

MPU—-9 Microprocessing Unit (M6800)

EXECUTABLE INSTRUCTIONS — ALPHABETIC LIST

ADD ACCUMULATORS
ADD WITH CARRY

ADD

LOGICAL AND
ARITHMETIC SHIFT LEFT
ARITHMETIC SHIFT RIGHT

BRANCH IF CARRY CLEAR
BRANCH IF CARRY SET

BRANCH IF EQUAL TO ZERD
BRANCH IF GREATER OR EQUAL ZERO
BRANCH IF GREATER THAN ZERO
BRANCH IF HIGHER

BIT TEST

BRANCH IF LESS OR EQUAL
BRANCH IF LOWER OR SAME
BRANCH IF LESS THAN ZERO
BRANCH IF MINUS

BRANCH IF NOT EQUAL TO ZERO
BRANCH IF PLUS

BRANCH ALWAYS

BRANCH TO SUBROUTINE
BRANCH IF OVERFLOW CLEAR
BRANCH IF OVERFLOW SET

COMPARE ACCUMULATORS
CLEAR CARRY

CLEAR INTERRUPT MASK
CLEAR

CLEAR OVERFLOW
COMPARE

COMPLEMENT

COMPARE INDEX REGISTER

DECIMAL ADJUST
DECREMENT

DECREMENT STACK POINTER
DECREMENT INDEX REGISTER

EXCLUSIVE OR
INCREMENT

INS
INX

Jvp
JSR

LDA
LDS
LDX
LSR
NEG
nNaop

ORA

PSH
PUL

ROL
ROR
RTI

RTS

SBA
SBC
SEC
SEI

SEV
STA
STS
STX
SuB
swi

TAB
TAP
TBA
TPA
TST
TSX
TXS

WAI

INCREMENT STACK POINTER
INCREMENT INDEX REGISTER

Jump
JUMP TO SUBROUTINE

LOAD ACCUMULATOR

LOAD STACK POINTER

LOAD INDEX REGISTER
LOGICAL SHIFT RIGHT
NEGATE

NO OPERATION

INCLUSIVE OR ACCUMULATOR

PUSH DATA
PULL DATA

ROTATE LEFT

ROTATE RIGHT

RETURN FROM INTERRUPT
RETURN FROM SUBROUTINE

SUBTRACT ACCUMULATORS
SUBTRACT WITH CARRY
SET CARRY

SET INTERRUPT MASK

SET OVERFLOW

STORE ACCUMULATOR
STORE STACK REGISTER
STORE INDEX REGISTER
SUBTRACT

SOFTWARE INTERRUPT

TRANSFER ACCUMULATORS

TRANSFER ACCUMULATORS TO CONDITION CODE REG
TRANSFER ACCUMULATORS

TRANSFER CONDITIGN CODE REG TO ACCUMULATOR
TEST

TRANSFER STACK POINTER TO INDEX REGISTER
TRANSFER INDEX REGISTER TO STACK POINTER

WAIT FOR INTERRUPT

TR1090

26

MPU—-10 Microprocessing Unit (M6800)

Vov = Vgg + 0.6 V = Clock Overlap
rneasurement point

Overshoot

MC6800 Min Max
Clock Timing (Figure 1)

Cycle Time teye 1.0 — 10 us

Clock Pulse Width PWoH ns
(Measured at Ve — 0.3 V) o1, 92 400 - 9500

Total ¢1 and ¢2 Up Time tut 900 - - ns

Rise and Fall Times 1,02 tor, tof - 100 ns
(Measured between Vgg + 0.3 V and Ve — 0.3 V)

Delay Time or Clock Separation td 0 - 9100 ns
(Measured at Vgy = Vgg + 0.6 V)

Overshoot Duration tos 0 - 40 ns

#1

MPU CLOCK WAVE FORM

NON-OVERLAP

o — F
FAVA

START ADDRESS SETUP

/ /— ADVANCE PROGRAM COUNTER

27

/

LATCH DATA

TR1018

Microprocessing Unit (M6800) MPU-—-11

This information will be decoded as an opcode versus data, since it will be
assumed the last instruction was terminated.

Looking at MPU—7, we see that LDA A requires 2 cycles and 2 bytes of data. The
first cycle was used to bring in the first byte.of data, 86, into the MPU. On the next ¢1
cycle, the program counter is transferred to the address bus and 1001 is placed on the
address bus selecting memory location 1001. ¢1 now falls and the program counter is
incremented by 1 to 1002. ¢2 rises to a logic 1 and 05 is the data placed on the data
bus. ¢2 goes low and 05 is now latched into the A accumulator. Here we have used
the immediate mode of addressing. In the immediate mode of addressing, the data is
contained in the second byte of the instruction. ¢1 goes high and the program counter
transfers its contents to the address bus which is 1002. ¢1 goes low and the program
counter is incremented to 1003 hex. $2 goes high and D6 is the data placed on the data
bus. Since the MPU finished the previous instruction (2 cycles, 2 bytes), it now knows
that the next data D6 is an opcode. To accomplish this instruction we need 3 cycles
and 2 bytes of data. We have used 1 cycle and 1 byte of data fetching the opcode.
Now ¢1 goes high and the contents of the program counter (1003) is transferred to
the address bus. ¢2 goes high and F1 is now placed on the data bus. ¢2 fallsand F1 is
latched into the MPU. Notice that we have used the direct mode of addressing. This
mode of addressing can be used when addressing memory locations 0 through 255
decimal. In this mode, the second byte of data is an address.

To review, in the direct mode, the first byte is the opcode and the second byte
is the address. Finally, on the third cycle, the data at memory location F1 is trans-
ferred to the B accumulator. On this last cycle, the program counter does not have to
and will not increment. ¢1 now goes high and the program counter transfers 1004 hex
to the address bus. ¢1 goes low and the program counter is incremented to 1005
hex. ¢2 goes high and 1B is placed on the data bus; and, on the falling edge of ¢2,
1B is latched into the MPU. To complete this instruction we need 2 cycles and 1 byte
of data. The mode of addressing we have used here is the accumulator mode. In this
mode of address the opcode and operand are contained in the first byte of data. All
that that is needed to terminate this instruction is another cycle to add the contents
of accumulator B to the contents of accumulator A. After this cycle has been com-
pleted, accumulator A has 09 hex and accumulator B has 04.

Any program can be handled in this fashion. Refer to a copy of the instruction
set summary chart. By looking at the mnemonic, you can obtain the hex opcode for
the addressing mode used. The required number of cycles and bytes are also given so
you can “‘step’’ through a particular program.

28

MPU—-12 Microprocessing Unit (M6800)

HARDWARE INTERRUPTS

What happens when the MPU gets a hardware interrupt? After it has been deter-
mined that the interrupt is not nonmaskable, the MPU checks the status of the mask
bit (bit 4 of the condition code register). If the mask bit is set, the main program
continues until a CLI (clears bit 4 of condition code register) instruction is executed,
after which time the MPU will honor an interrupt by going to the stack pointer (SP)
register and will fetch an address which will be the first address in RAM where the
status of the MPU registers will be stored during servicing of the interrupt.

SP : contents of program counter low
SP-1 : contents of program counter high
SP-2 : contents of index register low
SP-3 : contents of index register high
SP-4 : contents of accumulator A

SP-5 : contents of accumulator B

SP-6 : contents of condition code register

The address in the stack pointer register is determined by the programmer.

After the contents of the MPU registers have been stored in the stack, the mask
bit is set, thus preventing any further interrupts from interfering with the MPU until
the program executes a CLI instruction. Next the MPU hardware automatically looks
at addresses FFF8 (MS) and FFF9 (LS) for the address of the polling routine to find
out where the interrupt came from and what action to take.

After the interrupt has been serviced and an RTI instruction is executed, the
stack—which contains the contents of the registers before the interrupt—is unloaded in
reverse order, i.e., the condition code register is loaded first, then accumulator B
is restored, etc. When the registers have been restored to their contents before the
interrupt, the processor continues as though nothing happened.

The total story of interrupts is shown on the opposite page in the form of a
flow chart.

SUMMARY OF MPU OPERATION

The MPU requires a two-phase, symmetrical, nonoverlapping clock. During the
first phase of the clock (¢1 high), an address will be placed on the address bus by
the MPU. During the second phase of the clock (¢2 high), the bidirectional data bus
will be active. The first byte of an instruction enters the MPU and is transferred into
an internal instruction register and decoded by the MPU. The MPU will then contain
the information needed to read in an additional one or two bytes of program as neces-
sary. Once the entire instruction is read into the MPU (one, two, or three bytes),
the instruction is then executed. The MPU then reads in the next sequential byte
in the program and places it again in the instruction register. The program will sequen-
tially be executed in this manner unless a branch or jump instruction changes the
value of the program counter. |f this occurs, the next instruction to be executed is
determined by the new program counter value.

29

Microprocessing Unit (M6800) MPU—13

INTERRUPT FLOW CHART

SOFTWARE WAIT FOR
INTERRUPT INTERRUPT :{NA%-FE%\I;?JEE
(Swi) (WAI)

CONTINUE
MAIN PROGRAM

L v$ v
<l

HARDWARE

INTERRUPT SP PROGRAM COUNTER (L)
STACK MPU

REGISTER » SP-1 [PROGRAM COUNTER (H)
CONTENTS sP-2 [INDEX REGISTER (L)

SP-3 | INDEX REGISTER (H)
,KIVQTI SP-4 | ACCUMULATOR A
SP-5 | ACCUMULATOR B

N SP-6 | CONDITION CODE
SET MASK
(CCR4)

RESTART (L) FEFF
RESTART (H) FEFE
NON-MASKABLE (L) FFFD
NON-MASKABLE (H) FFFC LOAD INTERRUPT
SOFTWARE (L) l FFFB» VECTOR INTO
SOFTWARE (H) FFFA PROGRAM
HARDWARE (L) FFF9 COUNTER
HARDWARE (H) FFF8 i

INTERRUPT

PROGRAM TR1024-1

30

MPU—-14 Microprocessing Unit (M6800)

If an interrupt or reset occurs during this process, the program counter value will
also be changed. The new program counter value is determined by the highest eight
memory locations that are reserved for reset and interrupt vectors.

In the case of interrupt, the stack pointer is used to store the contents of the
internal registers necessary to return to the program location prior to the interrupt.
This happens when the interrupt program exits by an RTI (Return from Interrupt
instruction). Similarly, the stack pointer is used to store the program counter value
when a JSR (Jump to Subroutine) or BSR (Branch to Subroutine) instruction occurs.
The program counter returns to its original value when an RTS (Return from Sub-
routine) instruction occurs. The stack pointer value is set by an LDS (Load Stack
Pointer) instruction.

RESET SEQUENCE (Figure TR1029, below)

1. While HALT is high, Reset goes low for at least eight cycles of ¢1, ¢2, during which
interrupt bit (1) in CC is set.

2. Dataat FFFE loads into PCH.
3. Dataat FFFF loads into PCL.

4. PC contents go out on address bus during ¢1.

RESTART SEQUENCE
475V
l.@———— =8 CLOCK ___.‘
Vee CYCLES
RES
EDGE
RECEIVED ON
RESTART PIN

v

SET INTERRUPT
MASK

v

LOAD PROGRAM
COUNTER FROM
FFFE — PCy
FFFF > PCy

!

GO TO LLOCATION
DETERMINED BY
PC AND BEGIN
INITIALIZATION

TR1029

31

IRQ

1.

N 9o o &M w

N o > W

Microprocessing Unit (M6800) MPU—-15

Contents of memory location addressed enters instruction register during ¢2
and is decoded as first instruction.

If two or more byte instruction,. additional bytes enter MPU for execution. If
not, go to next step.

After execution, step 5 is repeated for subsequent instructions.

SEQUENCE
If the | bit in condition code register is not set (I = 0) and IRa—goes low, the IRQ
sequence will be entered.

After completion of the current intruction, internal registers PC, X, A, B, and CC
will be stored in RAM at the address indicated by the stack pointer in descending
locations (7 bytes in all).

The TRQ mask (bit | = 1) is set.

Data at FFF8 gets loaded into PCH.

Data at FFF9 gets loaded into PCL.

PC contents go out on address bus during ¢1.

Contents of memory location addressed enters instruction register during ¢2
and is decoded as first instruction of interrupt routine.

If it is a more than 1 byte instruction, additional bytes enter MPU for execution.
If not, go to next step.

After execution, step 7 is repeated for subsequent instructions. This loop is
repeated until the instruction ““RTI"" is executed.

If NMI goes low, the MPU will wait for completion of current instruction.

The internal registers PC, X, A, B, and CC will then be stored in RAM at the
address indicated by the stack pointer in descending locations (7 bytes in all).

The TRQ (bit | = 1) mask is set.

Data at FFFC is loaded into PCH.

Data at FFFD is loaded into PCL.

PC contents go out on address bus during ¢1.

Contents of memory location addressed enters instruction register during ¢2
and is decoded as first instruction of NMI subroutine.

32

MPU—-16 Microprocessing Unit (M6800)

RT

Swi

1.

© o » W N

If two or more byte instruction, additional bytes enter MPU for execution. If
not, go to next step.

After execution, step 7 is repeated for subsequent instructions. This loop is
repeated until the instruction RTI is executed.

EXECUTION

The contents of the stack are loaded back into the MPU (unwinds).

The contents of the PC go out on the address bus to fetch the first byte of the
next instruction.

INSTRUCTION

Contents of the MPU registers PC, X, A, B, and CC are stored in RAM at the
address indicated by the stack pointer in descending location (7 bytes in all).

The TRQ mask (bit | = 1) is set.

Data at FFFA gets loaded into PCH.

Data at FFFB gets loaded into PCL.

PC contents go out on address bus during ¢1.

Contents of memory location addressed enters instruction register during ¢2
and is decoded as first instruction of SWI subroutine.

If it is a more than one byte instruction, additional bytes enter MPU for
execution. If not, go to next step.

After execution, step 6 is repeated for subsequent instructions. This loop is
repeated until the instruction RTI is executed.

33

Cycle-by-Cycle Description of Sample Program MPU—-17

CYCLE BY CYCLE DESCRIPTION OF SAMPLE PROGRAM
~ JUUUUUUUUUU L

2
CYCLE 0 1 2 4
LDA A ADD A TO
WITH 2 3

—DI 1 MICROSECOND AT 1 MHz*

STA AIN LOC 402B

TR1232

ROM Address ROM Content Instruction
0018 86 LDA A #2
0019 02
001A 8B ADD A #3
001B 03
001C B7 STA A $402B
001D 40
001E 2B

indicates immediate mode of addressing.

$ indicates a hex number.

NOTE: Address 402B may be a RAM, PIA, or ACIA.

DESCRIPTION OF PROGRAM

The A accumulator is loaded with the number 2. Then the number 3 is added to
the 2 in the A accumulator with the result of 5 left in the A accumulator. The 5 in the
A accumulator is then stored in location 402B.

34

MPU-18 Cycle-by-Cycle Description of Sample Program

CYCLE

Cycle-by-Cycle Description of Sample Program

DESCRIPTION

The program counter is assumed to be set at 0018.

The program counter is gated onto the Address Bus (A@-A15) and the read/
write (R/W) line is put in a high state corresponding to a read condition.
This results in ROM address 0018 being accessed and the contents of this
address (86) being loaded into the instruction register (IR). The program
counter has incremented and becomes 0019. The byte “86’" in the IR is
decoded and interpreted to be a load A immediate {LDA A IMM)} instruction.

The program counter is gated onto the Address Bus and the R/W line is set
high corresponding to a read condition. This accesses ROM address 0019
with the contents of this address (02) being put on the Data Bus (DO-D7).
Since the instruction was decoded to be an LDA A immediate, the 02" is
loaded into the A accumulator. The program counter has incremented
and becomes 001A.

The sequence in (1) is repeated except ROM address 001A is accessed
resulting in 8B being loaded into the instruction register, and decoded to be
an ADD A immediate. The program counter has incremented to 001B.

The sequence in (2) is repeated except the data 03" is added to the A
accumulator giving a result in the A accumulator of “05". The program
counter has incremented to 001C.

The sequence in (1) is repeated which results in B7 being loaded into the
instruction register. The program counter has incremented to 001D. The in-
struction register is decoded and determined to be a STA A extended. This
causes the MPU to interpret the next two sequential locations in memory
(001D and O01E) as a 16-bit address with 001D the most significant and
001E the least significant half of the address.

Theé number (40) in ROM address 001D is read by the MPU and saved. The

. program counter has incremented to 001E.

The contents of ROM address 001E (2B) is read by the MPU and saved. The
MPU now has a full 16-bit address saved of 402B. The program counter has
incremented to 001F.

The extended address of 402B is gated onto the address bus register, and
the Data Bus is gated to output the A accumulator to the addressed memory
location.

Address 402B is accessed and the R/W line is put in a low state, corres-

ponding to a write. The data in the A accumulator is then gated onto the
data bus and stored in location 402B.

35

ADDRESSES

Microprocessing Unit (M6800) MPU-—-19

FFFF | EO A
FC RESTART 1K-BYTE ROM
AO }
FC NMI / FFFF
60 *
1
FC SWi
20 \
FFF8 | FC INTER (IRQ)
EXECUTIVE __,——”’—’
CODE
FD20
RESTART
FCEO ROUTINE
INTERRUPT
IENLY T \
FCAO ANV \
INTERRUPT
FC60 (SOFTWARE)
INTERRUPT / - co0
20 | ROUTINES (1IRQ)
SUBROUTINES
FCO0
TR1028

36

MPU—-20 Microprocessing Unit (M6800)

ocoLy.L

1A 5101

44 H3GWNN X3IH HLIM 00 viol

44$# SA1 Q3WW!I | HILNIOd XIV.LS V0T ISIMHIHLIO 38 £101
(q001)

J9Y vV QY01 0L XIVE HINVHSE 84 rALIIN
[138v1] INg 134 1vN03 LON SI NOSIHV4NOD dI 9z 1101
V8 oLol
v8 HIGWNN X3IH IHL HLIM 00 4001 y

V8$# XdJ a3Iwwi 43151934 XIANI IHL IHYIINOD a8 3001
(18 <08) L Ad

XNI HIHNI 934 X3ANI IHL INFWIHINI 80 aool
(58)5 + 934 X3aNI

907 ‘W3IW IHL 1V a3401S v1va 50 J00l

X'S$ vval axani JHL HLIM 39V V 3HL QY01 9y g00l

08 Vool

08 HIGWNN X3IH FHL HLIM 00 6001

08$#X01 a3anwi 43151934 X3ANI IHL AV01 39 8001

06 NOILVI01 AHOW3IW 01 0 L001L

06$ YV.1S Hia (40) "9V V 40 "IN0OJ JHOILS L6 9001
00V V NI 3H0LS ANV

vay HIHNI 99V v 0139V 9 40 'LNOJ @QV gl 5001

(Vo vlva) 0 00l

¥00Z NOILYI01 'WIW LV 02 £001

¥002$ 9Ya1 an.iX3 0340.1S V.1Va HLIM 833V QV01 94 2001

(viva) 50 100l

G$# vval a3wwni G'ON X3IH HLIM ¥’V @Y 01 98 oool

JINOWINW | S3aow SININWOI INILINOI | SS3Haav

AHOWIN

37

Microprocessing Unit (M6800) MPU—21

MC6800 BUS & CONTROL SIGNALS

+5V GND

————]
BUS AVAILABLE DATA
HALT —— BUS

THREE-STATE CONTROL =3

DATA BUS ENABLE ==

NON-VASKABLE INT. ADDRESS
NON-MASKABLE INT. —— MC6800 16 BUS
RESET R —
qﬂ e
VALID MEM.
92 = "= ADDRESS CONTROL
— ———— READ/WRITE
IRQ

TR1021

RAM USED FOR STACK STORAGE
RAM ADDRESS $0000—$007F
STACK POINTER

AT START OF comeiim-1 PC LOW 007F
SEQUENCE

PC HIGH
X Low

X HIGH
ACCUM. A

ACCUM. B
COND. CODES 0079

ENDING POINTER

(AFTER INTERRUPT) 0078

TR1025

38

Memory

39

Random Access Memory M-—1

RANDOM ACCESS MEMORY

GROUND — Vss{ @) Ve — POWER SUPPLY (+5V)
(Do D) A
D10 [A1
b2 D A2
D3 A3} ADDRESS LINES
DATA LINES P, MCM6810 Ag-A6
Dg-D7 D43 =¥V
128 X 8
D5 M) A5
D6 O STATIC) A6
U= RAM M R/W — READ/WRITE
(o1 = [CS5
CHIP SELECTS {CS183 ICS4 > CHIP SELECTS
S = [o3]
TR1031-2

RANDOM ACCESS MEMORY (RAM)

The MCM6810 is a TTL-compatible, static Random Access Memory (RAM). Itis
a three-state N-MOS chip containing 128 eight-bit words (128 bytes). housed in a 24-
pin package. It has 8 data bus pins, 7 address pins, 6 chip select pins {2 active leve!
high, 4 active level low), 2 power pins (ground and +5 V), and a read/write pin.

To access the RAM, all six chip selects must be at their proper levels. The R/W
pin must be in a high state to read from the RAM, and in a low state to write into
the RAM. When not being accessed, the RAM goes three-state, i.e., high impedance to

the data bus. A functional block diagram is shown on the next page.

40

M—2 Random Access Memory

7 ADDRESS INPUTS

MCM6810 RAM FUNCTIONAL BLOCK DIAGRAM

[]
[]
ADDRESS | o MEMORY
DECODER MATRIX
o 128 X 8
[]

jt—o
ls—o>

THREE-STATE
BI-DIRECTIONAL
TTL BUFFERS

SRR

$

00000000000

MEMORY CONTROL

41

81/0
DATA BUS

TR1032-2

Read Only Memory M-3

READ ONLY MEMORY

GROUND — vss : : AO
(oo O = N
p1 O) A2
D2 O 1 A3
DATA LINES 3 0 (] A4
D0-D7) ° MCM6830 | ADDRESS LINES
D4 M A5 A0-A9
1024 X 8
D5]) A6
06 OJ ROM e
07] A8
{ cs O] A9
CHIP SELECTS
cs 4 cs }
CHIP SELECTS
POWER (+5V) —Vpp 3 4 cS

TR1033

READ ONLY MEMORY (ROM)

The MCM6830 is a static, TTL-compatible Read Only Memory (ROM).

is a
single N-MOS chip containing 1024 eight-bit words (1024 bytes). The ROM is a three-

state device housed in a 24-pin package consisting of 10 address pins, 8 data bus pins
4 chip select pins, and 2 pins for power (+5 V and ground).

The chip selects are defined by the customer (mask programmable) to be either
high or low active level.

To access the ROM, all four chip selects must be at their proper levels. When not
accessed the device goes three-state, i.e., high input impedance to the data bus.

A functional block diagram is shown on the next page.

’

42

M—4 Read Only Memory

MCM&6830 ROM
FUNCTIONAL BLOCK DIAGRAM

Ccs*
CS+e» ‘\

$ DATA
BUS

MEMORY
CS* e————1 CONTROL
CS’.————————l
(o=t
[oo] ——-OW
w
[5 [o o e
a
2 o1 ° e
- TH -
2 | oo ADDRESS | | | MEMORY Al
w DECODER MATRIX BUFFERS
g o] ™ | ——o
<D(= [] -
2 | o ° | —o
o> L] ——0)
>

*DEFINED BY THE CUSTOMER

43

TR1034

M6800 Memories M—5

M6800 MEMORIES
MASK PROGRAMMABLE ROMS

tacC
MCM68A30 1KX8 +5v 350ns
MCM6832 2KX8 —5v, +5v, +12v 500ns
MCM68A308 1KX8 +5v 350ns
MCM68A316 2KX8 +5v 350ns
MCM68A332 4KX8 +5v 350ns
UV ERASABLE PROMS
MCM68708 1KX8 —5v, +5v, +12v 450ns
MCM2708 1KX8 —5v, +5v, +12v 450ns
MCM2716 2KX8 —bv, +bv, +12v 450ns
TR1217-2
M6800 MEMORIES
PROMS
tacc
MC7641 512X8 +5v 24 PIN 85ns
MC7643 1KX4 +5v 18 PIN 85ns
STATIC RAMS
MCM6810 128X8 +5v 24 PIN 450 ns
MCM2114 1KX4 +5v 18 PIN 200ns
DYNAMIC RAMS
MCM6604 4KX1 -5v, +5v, +12v 16 PIN 250 ns
MCM6605 4KX1 —5v, +5v, +12v 22 PIN 200ns
MCM4116 16KX1 —5v, +5v, +12v 16 PIN 150ns
MCM4096 4KX1 -5v, +5v, +12v 16 PIN 250ns
MCM4027 4KX1 —5v, +5v, +12v 16 PIN 150ns

TR1217A-2

44

PIA

Peripheral Interface Adapter (MC6821) PIA—1

PERIPHERAL INTERFACE ADAPTER (PlIA) — MC6821

The Peripheral Interface Adapter (PIA) is a means used to interface peripheral equip-
ment with the microprocessing unit (MPU). The PIA communicates with the MPU via
an eight-bit bidirectional data bus, three chip selects, two register selects, two interrupt
request lines, one read/write line, an enable line, and a reset line. These will be

discussed in detail later.
Each PIA has two 8-bit bidirectional peripheral data buses for interfacing with

peripheral equipment as shown in Figure 1.

PIA

PAO
DO

PERIPHERAL 8 LINES
DATA I ¥

]

(SIDE A)
PA7 DATA LINES TO/FROM MPU
PBO |

PERIPHERAL | D7

DATA 8 LINES

(SIDE B)

T

PB7

[SRERRY]

Each peripheral data line may be programmed to act as an input or an output. In
addition to the two 8-bit peripheral data buses, peripheral control lines CA2 and CB2
may be programmed to act as a peripheral data line as will be discussed later.

Each PIA consists of two control registers, two data direction registers, and two
peripheral interface registers (peripheral data). The control registers and the data
direction registers are used to control the data in and out of the PIA.

46

PIA—2 Peripheral Interface Adapter (MC6821)

8 DATA

LINES TO/FROM CONTROL

PERIPHERAL

LINES

LT

8 DATA

LINES TO/FROM CONTROL

PERIPHERAL LINES

/_—A—ﬂ/_J_—\

l CA1 CA2 ; CB1 CB2
PA7 — — — PAO PB7 — — — PBO
RSO =0 RSO =0
PERIPHERAL RS1-0 PERIPHERAL RS1=1
DATA - DATA CRB2 =1
REGISTER A CRAZ=1 REGISTER B PIA
RSO =0
DATA DIRECTION RSO =0 DATA DIRECTION gg;;_‘ 0
REGISTER A RS1=0 REGISTER B - 0 = INPUT
CRA2=0 ¢ |
T T T TTTT T T TTTTT L GR
“1” = OUTPUT D
— PWR
CONTROL RSO = 1 CONTROL RSO =1 (+5)
REGISTER A RS1=0 REGISTER B RS1=1
IRQA RES R/W D7---DO E RS1 RSO IRQB Cs0 cs1 Cs2
INTERRUPT RESET READ N,/ ENABLE ‘e’ INTERRUPT \mm e’
A TO MPU OR B TO MPU
WRITE 8DATA REGISTER CHIP
FROM LINES SELECT SELECT
MPU TO/FROM MPU FROM MPU FROM MPU
ADDRESS ADDRESS
LINES LINES TR1039-2

A. PERIPHERAL DATA LINES PAO through PA7

Each of these 8 data lines which interface with the outside world can be pro-
grammed to act as either an input or an output. This is accomplished by settinga 1"
in the corresponding bit in the Data Direction Register (DDR) if the line is to be an
output—or a ‘0" in the DDR if the line is to be an input. When the data in the peri-
pheral data lines are read into the MPU by a load instruction, those lines which have
been designated as input lines (0 in DDR) will be gated directly to the data bus and
into the register selected in the MPU. In the input mode, each line represents a maxi-
mum of two standard TTL loads for input high current and 1% standard TTL loads for
a low.

47

Peripheral Interface Adapter (MC6821) PIA—3

On the other hand, when an output data instruction (STA A PIA) is executed,
data will be transferred via the data bus to the peripheral data register. A “‘1" output
will cause a “high” on the corresponding data line and a “‘0”’ output will cause a “‘low"’
on the corresponding data line (two TTL load drive). Data in Peripheral Register A
that have been programmed as outputs may be read by an MPU ““LDA A from PIA"
instruction. If the voltage is above 2 volts for a logic ““1” or below 0.8 volts for a logic
“0”, the data will agree with that data outputted. However, if these output lines have
been loaded such that they do not meet the levels for logic ““1”, the data read back
into the MPU may differ from the data stored in the PIA Peripheral Register A.

B. PERIPHERAL DATA LINES PB@ through PB7

The 8 data lines which interface with the outside world on the B side may also be
programmed to act either as an input or as an output. This is also accomplished by
setting a “’1"" in the corresponding bit in the Data Direction Register (DDR) if the line
is to be an output—or a “0” in the DDR if the line is to be an input. The output
buffers driving these lines have three-state capability, allowing them to enter a high-
impedance state when the peripheral data line is used as an input. Data in Peripheral
Register B that have been programmed as outputs may be read by an MPU “LDA A
from PIA” instruction even though the lines have been programmed as outputs. If the
line has been programmed as an output and a logic “1”, reading the line will indicate
a logic “1” regardless of the voltage on the pin, due to buffering between the register
and the eutput pin.

C. DATALINES (D@ through D7)

The 8 bidirectional data lines permit transfer of data to/from the PIA and the
MPU. The MPU receives data from the outside world from the PIA via these 8 data
lines, or sends data to the outside world through the PIAs via the 8 data lines. The data
bus output drivers are three-state devices that remain in the high-impedance (off)
state-except when the MPU performs a PIA read operation.

D. CHIP SELECT LINES (CS@, CS1, CS2)

These are the lines which are tied to the address lines of the MPU. It is through
these lines that a particular PIA is se!ected (addressed). For selection of a PIA, the CSQ
and CS1 lines must be high and the "CS2 must be low. After the chip selects have been
addressed, they must be held in that state for the duration of the E (enable) pulse,
which is the only timing signal supplied by the MPU to the PIA. This enable pulse (E)
is normally the ¢2 clock. One of the address lines should be ANDed with the VMA
line with this output tied to a chip select.

48

PIA—4 Peripheral Interface Adapter (MC6821)

E. ENABLE LINE (E)

The enable pulse (E) is the only timing signal that is supplied to the PIA by the
MPU. Timing on all other signals is referenced to the leading or trailing edges of
the E pulse.

F. RESET LINE (RS)

This line is used to reset all registers in the PIA to a logical zero. This would be
used primarily during a reset or power-on operation. This line is normally in the high
state. A iow ievel resets ali registers in the PIA.

G. READ/WRITE LINE (R/W)

This signal is generated by the MPU to control the direction of the data transfers
on the data bus. A low state on the PIA Read/Write line enables the input buffers and
data is transferred from the MPU to the PIA (MPU write) on the falling edge of the E
(¢2) signal if the device has been selected. A high on the Read/Write line sets up the
PIA for a transfer of data to the data bus (MPU read). The PIA output buffers are
enabled when the proper address and the enable pulse are present, thus transferring
data to the MPU.

H. INTERRUPT REQUEST LINES (IRQA and IRQB)

These lines are used to interrupt the MPU either directly or indirectly through
interrupt priority circuitry. These lines are ““open source’’ (no load device on the chip)
and are capable of sinking a current of 1.6 mA from an external source. This permits
all interrupt request lines to be tied together in a “wire OR’’ configuration. Interrupts
are serviced by a software routine that sequentially reads and tests, on a prioritied
basis, the two control registers in each PIA for interrupt flag bits (Bit 6 and 7) that
are set. Discussion on the control registers and how the flag bits get set will follow.
When the MPU reads the Peripheral Data Register, the Interrupt Flags (Bit 6 and
Bit 7) are cleared and the Interrupt Request is cleared.

These request lines (IRQA and IRQB) are active low.

I. INTERRUPT INPUT LINES (CA1 and CB1)
These lines are input only to the PIA and set the interrupt flag (Bit 7) of the

control registers in the PIA. Discussion of these lines in conjunction with the control
register will follow.

49

Peripheral Interface Adapter (MC6821) PIA—5

J. PERIPHERAL CONTROL LINE (CA2)

This line can be programmed to act either as an interrupt input or as a peripheral
output. As an output, this line is compatible with standard TTL, (2 load drive) and as
an input represents two standard TTL loads for input high current and 1% standard
TTL loads for a low. The function of this line is programmed with Control Register A
(Bits 3, 4, and 5).

K. PERIPHERAL CONTROL LINE (CB2)

This line may also be programmed to act as an interrupt input or as a peripheral
output. As an input, this line has greater than 1 megohm input impedance and is
compatible with standard TTL. As an output, it is compatible with standard TTL (2
load drive) and may also be used as a source of up to 1 milliamp at 1.5 volts to directly
drive the base of a transistor switch. The function of this line is programmed with
Control Register B (Bits 3, 4, and 5).

CONTROL REGISTER A (CRA)

7 6 5 4 3 2 1 0

IRQA1 | IRQA2 CA2 Control DDRA CA1 Control

CA 1 Control (Bits @ and 1)

Peripheral control line CA1 is an'input-only line which may be used to cause an
interrupt by setting the interrupt flag IRQA1 (Bit 7) of Control Register A (CRA).
Bits @ and 1 of CRA are used to determine how the interrupt is to be handled.

After the MPU reads Peripheral Data Register A, the IRQA1 and IRQA2 (Bits 6
and 7) will be cleared.

50

PIA—6 Peripheral Interface Adapter (MC6821)

_Status of
Transition of Status of Status of IRQA1 IRQA Line
Interrupt Bit 1in Bit @ in (Interrupt Flag) (MPU Interrupt
Input Line CAT CRA (Edge) CRA (Mask) Bit7 of CRA Request)
’_‘L— 0 0 1 MASKED
(Remains High)
l 0 1 1 GOES LOW
(Processor
Interrupted)
I 1 0 1 MASKED
(Remains High)
I 1 1 1 GOES LOW
(Processor
Interrupted)

All other combinations of CA1 transition and status of Bit @and Bit 1 will be ignored.

As shown in the above chart, Bit 1 is the EDGE PROGRAMMING BIT. A logic
“0" in Bit 1 programs the Interrupt Flag Bit 7 (IRQA1) to respond to a negative
transition (edge) on CA1.

Bit @ of the control register is the CA1 interrupt MASK PROGRAMMING BIT. If
Bit @ has a logic 0", the setting of the Interrupt Flag Bit 7 (IRQA1) will not allow
the interrupt pin IRQA to go low. If Bit @ contains a logic “1”, the IRQA pin will go
low when the flag bit 7 goesto a 1.

Data Direction Access Control (DDRA) (Bit 2)

This bit, in conjunction with the register select lines (RS9 and RS1) is used to
select either the Peripheral Data Register or the Data Direction Register. To address
the A side control register, RS1 is set to a logic ’0"" and RS0 is set to a logic “‘1"".

RS1 RSO CRA (Bit 2) Register Selected

0 0 1 Peripheral Data Register A
0 0 0 Data Direction Register A
0 1 X Control Register A

51

Peripheral Interface Adapter (MC6821) PIA—7

CONTROL REGISTER B (CRB)
7 6 5 l 4 l 3 2 1 (1]
IRQB1 | IRQB2 CB2 Control DDRB CB1 Control

CB1 Control (Bits @ and 1)

Peripheral control line CB1 is an input-only line which may be used to cause an
interrupt by setting the interrupt flag IRQB1 (Bit 7) of control register B (CRB).
Bits @ and 1 of CRB are used to determine how the interrupt is to be handled.

After the MPU reads Peripheral Data Register B, the IRQB1 (Bit 7) and IRQB2
(Bit 6) will be cleared.

Status of
Transition of Status of Status of IRQB1 IRQB Line
Interrupt Bit 1in Bit @ in (Interrupt Flag) (MPU Interrupt
Input Line CB1 CRB (Edge) CRB (Mask) Bit 7 of CRB Request)

0 0 1 MASKED
(Remains High)

0 1 1 GOES LOW
(Processor
Interrupted)

.
.
__[_ 1 0 1 MASKED
_J__

(Remains High)

1 1 1 GOES LOW
(Processor
(Interrupted)

[B P mdiie
I

~D SN P cFotiic A L s e
CD 7 transitior aria status v I

Bit @ and Bit 1 will be ignoied.

Bits 1 and @ of control register B have the same programming use and logic as
Bits 1 and @ of the control register A, that is, Bit 1 is the Edge Programming Bit for
CB1 and Bit @ is the Interrupt Flag Mask Bit for CB1.

Data Direction Access Control (DDRB) (Bit 2)

This bit, in conjunction with the register select lines (RS@ and RS1), is used
to select either the Peripheral Data Register or the Data Direction Register. To address
the B side control register, RS1 is set to a logic 1" and RS@ is set to a logic “1"".

RS1 RSO CRB (Bit 2) Register Selected
1 0 1 Peripheral Data Register B
1 0 0 Data Direction Register B
1 1 X Control Register B

52

PIA—8 Peripheral Interface Adapter (MC6821)

CA2 Control (Bits 3, 4, and 5 of CRA) as an Interrupt Input

Bits 3, 4, and 5 of the control register determine the function of this line.

Status of IRQA2 Status of
Bit5in Status of Status of (Interrupt IRQA Line
Transition of CRA (1/O0 Bit4in Bit3in Flag) (MPU Interrupt
Input CA2 Control) CRA (Edge) CRA (Mask) Bit 6 of CRA Request)
‘—|__ 0 0 0 1 MASKED
(Remains
High)
_I—— 0 0 1 1 GOES LOW
(Processor
Interrupted)
l‘ l 0 1 0 1 MASKED
(Remains
High)
I 0 1 1 1 GOES LOW
(Processor
Interrupted)

All other combinations of CA2 transition and status of Bit 3 and Bit 4 will be ignored.

Bit 5 of the control register A is the Input/Output Programming Bit for CA2.
If Bit 5 contains a logic ‘0", CA2 is programmed as an interrupt input line. When
programmed as an interrupt input line, the programming of Bits 4 and 3 have the same
usage as Bits 1 and 0. Bit 3 is the Interrupt Mask Bit for CA2.

When Bit 5 is a logic /1", CA2 is programmed as an output and Bits 4 and 3 are

1ion v mraren v ~AF dhaa Fall Al hvan mmndas ~f amavationem (1) Lio dabanlo o AN 0
Uhcd tU proyiraiii vinic vi tll!‘.‘ onowinyg tIIICC modues ol U}Jb'ldt“."l- \ 1) Adnusiiare vioue,

(2) Pulse Mode, or (3) Bit 3 Following Mode. These three modes are detailed as follows.

CA2 Used as an Output

If Bit 5 of CRA is set to a logic ““1”, CA2 is designated as an output. The four
options utilizing CA2 as an output are shown below. In all four options the IRQA2
flag (Bit 6 of CRA) remains clear.

53

Peripheral Interface Adapter (MC6821) PIA—9

Bits 5, 4, 3 of CRA = 100 (Handshake Mode)

GOES HIGH ON
TRANSITION OF CA1
(IRQA1 FLAG BIT SET)

GOES LOW WHEN DATA ON
“A"” SIDE HAS BEEN READ BY
MPU AFTER FALLING EDGE
OF ENABLE SIGNAL (¢2)

CA2

\ f[(LDA A PIA1AD)
)8 /
_f e

Cuen—
ENABLE SIGNAL
(E), 92

HANDSHAKING WITH PERIPHERAL ON ‘A’ SIDE

DATA

PERIPHERAL

SAYS: DATA TAKEN
(LDA A PIATPA)

[.
CLELEm| 4 b

54

PERIPHERAL SAYS:
HERE'S NEW DATA
(SETS CRA7)

TR1053

PIA—10 Peripheral Interface Adapter (MC6821)

Bits 5, 4, 3 of CRA = 101 (Pulse Mode)

GOES HIGH ON

THE NEGATIVE
GOES LOW AFTER A “READ A
ﬁf‘éHNORMA'-'—Y SIDE DATA” INSTRUCTION (LDA) E'Z)Gé g,F,Jr:E
(NEGATIVE TRANSITION OF E) AETER A
“READ A
SIDE DATA”
INSTRUCTION
(LDA)
ENABLE (E)
SIGNAL

PULSE MODE
PULSE OUTPUT ON ‘A’ SIDE

J DATA 7 ' I

208 il
| 1

PDRA

PIA PERIPHERAL
CA2 -

7 CRA 0
Lol fef] xfx]

DATA “READ” BY MPU
PULSE INITIATED AS A RESULT

OF READING ‘A’ SIDE TR1055
(LDA A PIATPA)

55

Peripheral Interface Adapter (MC6821) PIA—-11

Bits 5, 4, 3 of CRA = 110 (Bit 3 Following Mode)

CAZ2 will always be low.

Bits 5,4, 3, of CRA=111

CA2 will always be high.

bg bg b3 CA2
1 1 0 0
1 1 1 1

CB2 Control (Bits 3, 4, and 5 of CRB) as an Interrupt Input

Bits 3, 4, and 5 of the control register determine the function of this line.

Status of IRQB2 Status of -
Bit5in Status of Status of (Interrupt IRQB Line
Transition of CRB (1/0 Bit4 in Bit 3 in Flag) (MPU Interrupt
Input CB2 Control CRB (Edge) CRB (Mask) Bit 6 of CRB Request)
0 0 0 1 MASKED
(Remains
High)
0 0 1 1 GOES LOW
I (Processor
Interrupted)
0 1 0 1 MASKED
(Remains
High)
0 1 1 1 GOES LOW
— (Processor
Interrupted)

All other combinations of CB2 transition and status of Bit 3 and Bit 4 will be ignored.

The programming of Bits 3, 4, and 5 in control register B has the same use as
Bits 3, 4, and 5 in control register A. Control register B programs CB1 and CB2 while
control register A programs CA1 and CA2.

56

PIA—12 Peripheral Interface Adapter (MC6821)

CB2 Used as an Output

If Bit 5 of CRB is set to a logic 1", CB2 is designated as an output. The four
options utilizing CB2 as an output are shown below. In all four options, the IRQB2
flag (Bit 6 of CRB) remains clear and the |RQB interrupt request line remains high.

Bits 5, 4, 3 of CRB = 100 (Handshake Mode)

GOES LOW ON FIRST
POSITIVE EDGE OF ENABLE
SIGNAL AFTER THE MPU
STORES DATA TO THE "B~
SIDE. (STA A PIA1BD)

GOES HIGH ON TRANSITION
OF CB1 (IRQB1 FLAG BIT SET)

LC
27 /
CB2
PR | | S
ENABLE

© 02 —l— —

HANDSHAKING WITH PERIPHERAL ON ‘B’ SIDE

DATA {-L

PDRB
CB1 | ——=
PIA PERIPHERAL
cB2 -
xlof fofo] fof] e
.//,’/
/,/
SAYS HERE'S NEW DATA - PERIPHERAL
(STA A PIATPB) REQUEST FOR DATA

TH1050

57

Peripheral Interface Adapter (MC6821) PIA—13

Bits 5, 4, 3 of CRB = 101.(Pulse Mode)

CB2 NORMALLY

HIGH GOES LOW ON THE POSITIVE
TRANSITION OF THE FIRST
E PULSE AFTER A “WRITE B
SIDE DATA” INSTRUCTION
>
ENABLE
SIGNAL

PULSE MODE
PULSE OUTPUT ON ‘B’ SIDE

DATA

i |

GOES HIGH ON THE
NEXT POSITIVE E
PULSE AFTER A
“WRITE B

SIDE DATA” -
INSTRUCTION
(STA)

PDRB
PIA PERIPHERAL
c82
7 CRB o
Uclol el o IxIx]
NEW DATA PRESENTED
AT PORT
PULSE INITIATED AS A RESULT FOR PERIPHERAL
OF WRITING INTO ‘B’ SIDE TR1084
(STA A PIATPB)

58

PIA—14 Peripheral Interface Adapter (MC6821)

Bits 5, 4, 3 of CRB = 110 (Bit 3 Following Mode)

CB2 will always be low.

Bits 5,4, 3 of CRB = 111

CB2 will always be high.

bs bg b3 CB2
1 1 0 0
1 1 1 1

SUMMARY OF PIA CONTROL REGISTERS
A. REGISTER SELECTS RSQ AND RS1
If RS1 is set to a logic ‘0", then “A”’ side is selected.
If RS1 is set to a logic /1", then the “B’’ side is selected.

If RSO is set to a logic ‘0" and CRA (or CRB) Bit 2 is set to a logic ‘1" the
peripheral data register is selected.

If RSO is set to a logic “0”, and CRA (or CRB) Bit 2 is set to a logic ‘0", then
the data direction register is selected.

if RSO is set to a logic 1", the controli register is seiected.

B. CA1ORCB1INTERRUPT LINE

If Bit 0 of CRA (or CRB is set to a logic "“0", all interrupts caused by CA1 (or
CB1) are disallowed by the PIA. However, the respective flag bits will be set by CA1
and/or CB1.

C. CA2O0RCB2 INTERRUPT LINE
If Bit 3 of CRA (or CRB) is set to a logic 0", all interrupts caused by CA2 (or
CB2) are disallowed by the PIA. If Bit 5 of CRA (or CRB) is set to a logic ““1”, then the

CA2 (or CB2) line is used as an output line per previous table and the respective flag
bits CRA6 (CRB6) are reset to a “0"".

59

Peripheral Interface Adapter (MC6821) PIA-15

D. The interrupt flag bits (6, 7 of both the A and B control registers) are read only
bits. The MPU cannot write into Bits 6 and 7 of either control register. Only interrupt
inputs from the ““outside world” can set Bits 6 or 7 of the control registers. The MPU
can reset the flag bits by reading the respective peripheral data registers. When the read
peripheral data register is performed, both flag bits (6 and 7) are cleared.

SUMMARY OF CONTROL REGISTERS CRA AND CRB

Control Registers CRA and CRB have total control of CA1, CA2, CB1, and CB2
lines. The status of eight bits of the control registers may be read into the MPU.
However, the MPU can only write into Bit O through Bit 5 (6 bits), since Bit 6 and
Bit 7 are set only by CA1, CA2, CB1, or CB2.

ADDRESSING PlAs

Before addressing PlAs, the Data Direction (DDR) must first be loaded with the
bit pattern that defines how each line is to function, i.e., as an input or an output.
A logic 1" in the Data Direction Register defines the corresponding line as an output
while a logic 0" defines the corresponding line as an input. Since the DDR and the
Peripheral Data Lines have the same address, the control register bit 2 determines
which register is being addressed. If Bit 2 in the control register is a logic ““0"’, then the
DDR is addressed. If Bit 2 in the control register is a logic 1’ the Peripheral Data
Register is addressed. Therefore, it is essential that the DDR be loaded first before
setting Bit 2 of the control register.

The above sequence of setting up the PIA assumes that the data outputs of the
PIA are active high (True = 2.4 volts). If all the outputs at a given PIA port are active
low (True < 0.4 volts), see the section on ACTIVE LOW OUTPUTS.

EXAMPLE

Given a PIA with an address of 4004, 4005, 4006, and 4007. 4004 is the address
of the A side Peripheral Interface Register. 4005 is the address of the A side control
register. 4006 is the address of the B side Peripheral Interface Register. 4007 is the
address of the B side control register. On the A side, Bits 0, 1, 2, and 3 will be defined
as inputs, while Bits 4, 5, 6, and 7 will be used as outputs. On the B side, all lines
will be used as outputs.

60

PIA—16 Peripheral Interface Adapter (MC6821)

The program to accomplish the above is as follows.

PIA1AD = 4004
PIATAC = 4005
PIA1BD = 4006
PIA1BC = 4007
1. LDA A #%11110000 (4 outputs, 4 inputs)
2. STA A PIATAD (Loads A DDR)
3. LDAA#%11111111 (All outputs)
4. STA A PIA1BD (Loads B DDR)
5. LDA A #%00000100 (Sets Bit 2)
6. STA A PIA1IAC (Bit 2 set in A control register)
7. STA A PIA1BC (Bit 2 set in B control register)

Statement 2 addresses the DDR, since the control register (Bit 2) has not been loaded.
Statements 6 and 7 load the control registers with Bit 2 set, so addressing PIA1AD
or PIA1BD accesses the Data Register.

PIA PROGRAMMING VIA THE INDEX REGISTER

The program shown in the previous section can be accomplished using the
Index Register.

1. LDX #$F004

2. STX PIA1AD $F0 —~ PIATAD; $FO— PIATAC
3. LDX #S$FF04

4. STX PIA1BD $FF -~ PIA1BD; $04 > PIA1BC

Using the Index Register in this example has saved six bytes of program memory
as compared to the program shown in the previous section.

ACTIVE LOW OUTPUTS

When all the outputs of given PIA port are to be active low (True < 0.4 volts),
the following procedure should be used.

a) Set Bit 2 in the control register.

b) Store all 1s ($FF) in the peripheral data register.
c) Clear Bit 2 in the control register.

d) Store all 1s ($FF) in the data direction register.
e) Store control word (Bit 2 = 1) in control register.

61

Peripheral Interface Adapter (MC6821) PIA-17

EXAMPLE

The B side of PIA1 is set up to have all active low outputs. CB1 and CB2 are set
up to allow interrupts in the HANDSHAKE MODE and CB1 will respond to positive
edges (low-to-high transitions). Assume reset conditions. Addresses are set up and
equated to the same labels as previous example.

1. LDA A#4

2. STA APIAIBC Set Bit 2 in PIA1BC (Control Register)
3. LDA B #$FF

4. STA B PIA1BD All 1s in Peripheral Data Register

5. CLR PIA1BC Clear Bit 2

6. STA B PIA1BD All 1s in Data Direction Register

7. LDA A #$27

8. STA APIA1BC 00100111 »— Control Register

The above procedure is required in order to avoid outputs going low, to the active low
TRUE STATE, when all 1s are stored to the Data Direction Register as would be the
case if the normal configuration procedure were followed.

INTERCHANGING RS@ AND RS1

Some system applications may require movement of 16 bits of data to or from
the ““outside world” via two PIA ports (A side + B side). When this is the case it is an
advantage to interconnect RS1 and RS@ as follows.

RSO to A1 (Address Line A1)
RS1 to A@ (Address Line AQ)

This will place the peripheral data registers and control registers side by side in the
memory map as follows.

Table Example Address
PIA1AD $4004
PIA1BD $4005
PIATAC $4006
PIA1BC $4007

The index register or stackpointer may be used to move the 16-bit data in two
8-bit bytes with one instruction. As an example:

LDX PIATAD PIATAD - IXQ: PIAT1BD == IX|_

62

PIA—18 Peripheral Interface Adapter (MC6821)

PIA — AFTER RESET

When the RS (Reset Line) has been held low for a minimum of one microsecond,
all registers in the PIA will be cleared.
Because of the reset conditions, the PIA has been defined as follows.

1. Al 1/0 lines to the “"outside world’’ have been defined as inputs.

2. CA1, CA2, CB1, and CB2 have been defined as interrupt input lines that
are negative edge sensitive.

3. All the interrupts on the control lines are masked. Setting of interrupt flag
bits will not cause IRQA or IRQB to go low.

SUMMARY OF CA1-CB1 PROGRAMMING

Bits 1 and @ of the respective control registers are used to program the interrupt
input control lines CA1 and CB1.

bq bg

0 0 by =Edge (0=-,1=+)

0 1 bg = Mask (0 = Mask, 1 = Allow)
1 0

1 1

Note that this is the same logic as Bits 4 and 3 for CA2-CB2 when CA2-CB2 are
programmed as inputs.

SUMMARY OF CA2-CB2 PROGRAMMING

Bits 5, 4, and 3 of the control registers are used to program the operation of
CA2-CB2.

bg bg b3
0] o) 0 (Mask) CA2-CB2 Input Mode
ﬁ\"‘PZU‘TCBZ 0 0(-) 1 (Allow) bg=Edge (0=-,1=+)
MODE 0 1(+) 0 (Mask) bz =Mask (0= Mask, 1=Allow)
o] 1+ 1 (Allow)
1 0 0 — HANDSHAKE MODE
CA2-CB2 1 0 1 — PULSE MODE
OUTPUT—m! | 1
MODE) : 1 bz FOLLOWING MODE
L

63

Peripheral Interface Adapter (MC6821) PIA-19

860141

$9q ~———i

L8d —————
9] ~a——
19 ——

Pt

pr cmm cmme w—— cwme e — o

“ <:

Jalvid
agivid
Jvivid
avivid

NOILIONOJD 13534 JNNSSY

JO0W INVHS ONVH — 290

1dNYYILNI ¥SYI ‘3903 JAILYIIN — 19D
JA0N 3STNd — 2V

L1dNYYILNI MOV ‘3903 JAILISOd — LVI

-SINIT T1041INOI

‘SM01704 SV 0/1

W317904d NOILYHNIIINOD Vid

64

PIA—20 Peripheral Interface Adapter (MC6821)

PIA CONFIGURATION SOLUTION

LDA A #$BC 10111100
STAAPIATAD 1/0 TO DDRA

LDA A #$FF 11111
STAAPIAIBD /0 TODDRB

LDA A #82F 0010 1111
STAAPIATAC TO “A” CONTROL
LDA A 2824 0010 0100
STAAPIATBC TO “B”CONTROL

TR1059

INITIALIZING PIA ON POWER-UP

MPU ENTERS FROM
RESTART SIGNAL

!

LOAD DDRWITH DATA | LDA A =$XX
TO DETERMINE 1/0’s STA APIA1TPA/B

l

LOAD CRWITH
APPROPRIATE DATA
ANDBIT2=1

!

REST OF
INITIALIZATION
ROUTINE

LDA A =XX
STA APIA1ICA/B

TR1061

65

Peripheral Interface Adapter (MC6821) PIA—21

For convenience the following table summarizes the improvements incorporated in the
MC6821 vs. the MC6820.

Summary of Differences — 6820 vs. 6821

6820 6821
RESET Although RESET clears all the | All the bits including the flag
registers, if a negative edge bits are held to zero.
comesinonCA1,CA2,CB1,and
CB2, the appropriate flag bit can
set even though the RESET pin
is zero.
Enable Input 1. Cin = 20 pf max 1. Cin = 7.5 pf max

ViH min = VsS + 2.4 volts
VIL max = VSS + 0.4 volts

2. Refreshes the data bus
drivers drivers.

3. Clocks in interrupts

VIH min = Vss + 2.0 volts
VIL mzx = Vss + 0.8 volts

2. No data bus driver refresh
required.

3. Does not clock in interrupts,
however one E pulse is
required while the input is at
the inactive level prior to
receiving the active

transition.
Output Drive 1 TTL load 2 TTL load
Capability
(A and B side
and
IRQA and IRQB)
PD Max 650 mw 550 mw

66

TR1231

ACIA

Serial Data Communications ACIA-—1

SERIAL DATA COMMUNICATIONS

As has been shown in previous sections of this manual, the M6800 MPU works with
8 bits per byte and the bytes are moved in a parallel format, i.e., all bits of a given byte
move at the same time.

There are times when data must move over a communications channel or media
that is expensive per unit length. When this is the case, it is desirable to trade off
communications channel cost for time. Rather than have 8 channels provided in order
to move data in a parallel format, it is far less expensive to provide a single communica-
tions channel and move the data in a serial format. When data is moved in a serial
format, it takes more time to send the byte for a given communications rate or channel
bandwidth, but a lesser number of channels are required.

The very simplest example would be where a system on the ground floor of
a building must send data to a system on the fifth floor. It may be less expensive (less
cabling to the fifth floor) and will be more reliable if a single channel is used for
the communications.

The MC6850 Asynchronous Communications Interface Adapater provides the
M6800 MPU-based systems designer with a means of implementing serial
communications. The main function of the ACIA is to provide a hardware means of
parallel-to-serial and serial-to-parallel data conversion and communications control via
software programming.

MPU ACIA
SYSTEM MC6850

T1IR1155

68

ACIA—2 Serial Data Communications

MPU TO REMOTE SITE VIA MODEM

RECEIVE
MPU ACIA MODEM
SYSTEM MC6850 | TRANSMIT MC6860
RVAVAV)

oL

TR1156

Asynchronous Communications Interface Adapter (ACIA) —MC6850

The Asynchronous Communications Interface Adapter (ACIA) is a means used to
receive and transmit up to eight bits of data for serial data communications. The ACIA
communicates. with the MPU via an eight-bit bidirectional data bus, three chip select
lines, one register select line, one interrupt request line, an enable line, and one
read/write line.

The ACIA has four registers which may be addressed by the MPU. The Status
Register (SR) and the Receiver Data Register (RDR) are ““read only’’ registers in that
the MPU cannot write into two registers. The Transmit Data Register (TDR) and
the Control Register (CR) are “write only’” registers in that the MPU cannot read
from these registers.

MPU Interface Lines
A. BIDIRECTIONAL DATA LINES (D@-D7)

The eight bidirectional data lines permit transfer of data to and from the ACIA
and the MPU. The MPU receives data from the outside world from the ACIA via these
eight data lines or sends data to the outside world through the ACIA via the eight
data lines. The data bus output drivers are three-state devices that remain in the high-
impedance (off) state except when the MPU performs an ACIA read operation.

69

MARKING ey -—

SPACING

BIT TIME —== 909

MARKING =y

SPACING

(SEE TABLE
BELOW)

BIT TIME o

Serial Data Communications ACIA—3

110 BAUD
SERIAL ASCII DATA TIMING

r—~" - T r—/Aa~—"-"717T-""rr—°"-
| | | | Il | | | |
| I | ! I | I I
| [[I l | l I :
S DU I S DR SN GHP R R [
l DATA BITS j
I
|
msec
START DO D1 D2 D3 D4 DS D6 PARITY STOP STOP
BIT BIT BIT BIT
| CHARACTER TIME @ 10 CPS (11 BITS) ——4
100 msec
TR1159
| I R S R IR R SR B
I | | I : | | | I
[| I | : | | |
S Y N SO DU S SN B o
DATA BITS
~—
START DO D1 D2 D3 D4 DS D6 PARITY STOP
BIT BIT BIT
le— CHARACTER TIME @ 15 & 30 CPS (10 BITS) *—4

(SEE TABLE BELOW)

BAUD RATE 150 300
CHARACTERS/SEC | 15 30
BIT TIME (msec)| 6,67 3.33
CHARACTER TIME (msec)| 66.7 33.3 SEC
BIT TIME = ————
BAUD RATE
150 & 300 BAUD SERIAL ASCII DATA TIMING
TR1160

70

ACIA—4 Serial Data Communications

05 | g |PARITY| sTop | sToP | cHaR.

D, D3 Dg'

ASCII CODE
BITS 4 THRU 6 - 0 1 2 3 4 5 6 7
F 0 NUL DLE [SP 0 @ P P
1 SOH DC1 ! 1 A Q a g
2 STX DC2 " 2 B R bor
3 ETX DCc3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK | % 5 E u e u
BITSOTHRU3 < 6 ACK SYN | & 6 F v f v
7 BEL ETB ‘ 7 G w g 0w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y iy
A LF sus * : J Z iz
B VT ESC + ; K [ko
c FF FS . < L / L
D CR GS - = M] m
E S0 RS : > N 1 noo=x
_F S| us / ? 0 - o DEL
TR1097
SEND A 7 BIT ASCII CHAR. “H”
:\l:ll DADITV 2 e‘rnn m'rc
LVLIV T Al -_— 1Jyr o
H= 4815 = 10010002
MARK
: !
. NEXT
!

b - —— —
e — ———

b = ———

START, Dg 0,
1

SPACE

TR1161

Serial Data Communications ACIA-5

PARALLEL TO SERIAL CONVERTER

AND
SERIAL TO PARALLEL CONVERTER
DATA IN
EEERER]
BUFFER DATA SHIFT REGISTER
IN
HEEEEEE HEEEEE
SHIFT REGISTER DATA BUFFER
out
EEREEREE
TRANSMITTER PORTION N ,
DATA OUT

RECEIVER PORTION

TR1162

B. CHIP SELECT LINES (CS@, CS1, CS2)

These are the lines which are tied to the address lines of the MPU. It is through
these lines that a particular ACIA is selected (addressed). For selection of an ACIA,
the CS@ and CS1 lines must be high and the CS2 must be low. After the chip selects
have been addressed, they must be held in that state for the duration of the E enable
pulse, which is the only timing signal supplied by the MPU to the ACIA.

C. ENABLE SIGNAL (E)

The enable pulse is a high-impedance, TTL-compatible input from the MPU that
enahles the ACIA input or output buffers, and clocks data to or from the ACIA.

D. READ/WRITE LINE (R/W)

The Read/Write line is a high-impedance, TTL-compatible input that is used to
control the direction of data flow between the ACIA’s eight-bit parallel data bus and
the MPU. When Read/Write is high (MPU read), the ACIA output driver is turned on
and a selected register is read by the MPU. When the Read/Write line is low (MPU
write), the ACIA output driver is turned off and the MPU writes into a selected register.
Thus, the Read/Write signal, in conjunction with the register select line, is used to
select the registers within the ACIA that are read only.

Register Select Read/Write ACIA Register MPU
(RS) (R/W) Selected Read or Write

0 0 Control Write

0 1 Status Read

1 0 Transmit Data Write

1 1 Receive Data Read

72

ACIA—6 Serial Data Communications

ACIA
—r——_————— e ——— ——
GND ——I TRANSMIT DATA REGISTER (TDR)
|] SERIAL DATA OUT |
PWR WRITE ONLY [07 iua l Do DA 03]DZ mJ Do lv
ts T XD i
l GRIVERS l
(FROM
D7
g == MPU DATA STATUS REGISTER (SR) |
M D6 LINES (PARALLEL
~ TOSERIALCONVERTER) [71 6 1 51 a1 3] 21 11 o}
4 — | —
oata | T 0s ra | ee loven| re | c7s| oco [Tore|rorr)|
LINES | D8 READ ONLY
0 | |
OR <,l 03
FROM |
MPU 02 CONTROL REGISTER (CR) I
|
7 4
01 TO MPU DATA LINES ile [s]2]1 o I
l . (SERIAL TO RIE TC WS CD0S I
Do PARALLEL
| CONVERTER) WRITE
| ONLY |
v AN '
| READ] SERIAL DATA IN axo |
ONLY 00 | D1] D2 031 D4 | D5 D6 | D7 I‘ |
TXC
HECEIVE DATA REGISTER(RDR) . L
L'Hﬂ __Bs CTS __ G0 _cst €2 DCD_RTS |
INTERRUPT ENABLE CLEAR 1_ REQUEST
RECEIVE T0 SEAD T0
cLOCK MPU WRITE semn SEND
TRANSMIT FROM (R siGNAL cmp SELECT T0
cLocK MPU REGISTER FROM FROM MPU MODEM
MODEM ADDRESS DATA
LINES cADDIED
------ CARRIER
DETECT
ADDRESS FROM
LINE MODEM

TR1163

Serial Data Communications ACIA-7

E. REGISTER SELECT (RS)
The Register Select line is a high-impedance, TTL-compatible input from the MPU

that is used to select, in conjunction with the Read/Write line, either the Transmit/

Receiver Data register or the Control/Status register in the ACIA as shown in para-
graph D of this section.

F. INTERRUPT REQUEST LINE (IRQ)
The Interrupt Request Line is a TTL-compatible output line to the MPU that is
used to interrupt the MPU upon the occurrence of certain events. This line is active in

the low state and remains low as long as the interrupt is present and the appropriate
interrupt enable within the ACIA is set.

ACIA Registers
A. STATUS REGISTER (READ ONLY)

The Status Register can on/y be read by the MPU. This register is selected when
the Register Select (RS) line is low and the Read/Write (R/W) line is high (RS+ R/W=01).

STATUS REGISTERS (SR)

7 6 5 4 3 2 1 [}
IRQ PE| OVRN| FE | CTS | DCD|TDREjRDRF

Bit @ — Receiver Data Register Full (RDRF)

1" — The Receiver Data Register is full. This bit is cleared when the
RDR is read by the MPU.

0" — The Receiver Data Register has been read by the MPU. The non-
destructive read cycle clears the RDRF bit, although the data in
the Receiver Data Register is retained. If the DCD line goes
high indicating loss of carrier, the RDRF bit is clamped at
logic 0" indicating the contents of the Receiver Data Register
are not current.

74

ACIA—8 Serial Data Communications

Bit 1 — Transmit Data Register Empty (TDRE)

1" — The Transmit Data Register is empty and new data may be trans-
ferred. This bit is cleared by a write from the MPU to the TDR.

— IRQ (bit 7 gets set).
“0’" — The Transmit Data Register is full.

When a logic ‘1" is present on the CTS pin a 1 will be present in bit 3 of
the Status Register indicating it is not clear to Send. This condition will
clamp bit 1 of the Status Register (TDRE) to a logic 0" and inhibit inter-
rupts due to a Transmit Register Empty collection. See Bit 7 — IRQ.

Bit 2 — Data Carrier Detect (DCD)

1" — There is no carrier from the modem. This also clamps bit O
(RDRF) to a logic “0”, thus inhibiting further interrupts from
RDRF. See Bit 7-IRQ.

“0"" — The carrier from the modem is present.

Bit 3 — Clear to Send (CTS)

‘1" — The Clear to Send line from the modem is high, thus inhibiting the
Transmit Data Register Empty (TDRE) bit. Modem is not ready
for data.

0" — The Clear to Send line from the modem is low. Modem is ready
for data.

Bit 4 — Framing Error (FE)

“1"" — Framing Error indicates that the received character is improperly
framed by the start and stop bit and is detected by the absence of
the first or second stop bit. This error indicates a synchronization
error, faulty transmission, or a break condition. This error flag is
set or reset during the receiver data transfer time. Therefore, this
error indicator is present throughout the time that the associated
character is available.

0" — The received character is properly framed.

Serial Data Communications ACIA—9

Bit 5 — Receiver Overrun (OVRN)

1" — Overrun is an error flag that indicates that one or more characters
in the data stream were lost. That is, a character or a number of
characters were received but not read from the Receiver Data
Register (RDR) prior to subsequently being received. The overrun
condition begins at the midpoint of the last bit of the second
character received in succession without a read of the RDR having
occurred. The Overrun does not occur in the Status Register until
the valid character prior to Overrun has been read. Character syn-
chronization is maintained during the Overrun condition. The
Overrun indication is reset after the reading of data from the
Receive Data Register. Overrun is also reset by the Master Reset.

"0 — No Receiver Data Overruns have occurred.

Bit 6 — Parity Error (PE)

1" — The parity error flag indicates that the number of highs (ones) in
the character does not agree with the preselected odd or even
parity. Odd parity is defined to be when the total number of ones
is odd. The parity error indication will be present as long as the
data character is in the RDR. If no parity is selected, then both
the transmitter parity generator output and the receiver parity
check results are inhibited.

0" — No parity error occurred.

Bit 7 — Interrupt Request (IRQ)

upt in the ACIA. This bit bein

o inh Aniicns +h
ging riigri Causcs ui

m

here is an in t
IRQ output line to be low. This will be cleared by reading the
Status Register and writing into the Transmit Data Register or
reading the Receiving Data Register.

Interrupts (IRQ=1) can also be caused by loss of receive carrier
(DCD=1). The respective interrupts—a) Transmitter Data Register
Empty, b) Receiver Data Register Full, ¢/ Data Carrier Loss—will
only occur if the respective interrupts are enabled, i.e., bit 7 of the
Control Register set to a 1 for receive interrupts and Bit 6=0 and
Bit 5=1 of the Control Register for the transmit interrupts.

0" — No interrupt present.

76

ACIA—10 Serial Data Communications

B. CONTROL REGISTER (WRITE ONLY)

The Control Register can only be written into by the MPU. This register is
selected when the Register Select (RS) line and the Read/Write line are both low

(RS- R/W = 00).
CONTROL REGISTER (CR)
7 6 5 4 3 2 1 o)
F:‘ Transmitter Word Counter
FIE Control Select Divide

Receiver Interrupt Enable

Bits @and 1 — Counter Divide Select Bits (CDS)

Maximum Data

CR1 CRO Function Clock Rate
0 0 +1 500 KHz
0 1 +16 800 KHz
1 0 ~64 800 KHz
1 1 Master Reset

Bits 2, 3, and 4 — Word Select Bits (WS)

B4 B3 B2 Word Length + Parity + Stop Bits

0 0 0 7 Even 2
0 O 1 7 Odd 2
0 1 0 7 Even 1
0 1 1 7 Odd 1
1 0 0 8 None 2
1 0 1 8 None 1
1 1 0 8 Even 1
1 1 1 8 Odd 1

77

Serial Data Communications ACIA—11

Bits CR5 and CR6 have the following system application:

CR6 CR5

0 0 The RTS pin is /ow and Transmit Interrupts are
inhibited. This is the code used when requesting
that the communications channel be set up. It is
not clear to send data yet.

0 1 The RTS pin is /ow and the communications chan-
nel has been set up. Therefore, this code is used
to generate |IRQs via the TDRE bit in the Status
Register.

1 0 The lﬁ pin is high and transmit interrupts are
inhibited. This code can be used to ‘’knock down’’
the communications channel.

1 1 The RTS pin is /ow (keep up communications
channel), a break signal (low level on transmit data
out line) is transmitted. This is used to interrupt
the remote system.

Bit 7 — Receiver Interrupt Enable (RIE)

1" — Enables interrupts caused by:
a) Receiver Data Register Full going high;
b) A low to high transition on the Data Carrier Detect signal line.

“0” — Inhibits interrupts due to Receive Data Register Full or loss of
Receive Data Carrier.

Clock Inputs

Separate high-impedance, TTL-compatible inputs are provided for clocking of
transmitted and received data. Clock frequencies of 1, 16, or 64 times the data rate
may be selected.
A. TRANSMIT CLOCK (TXC)

The transmit clock input is used for the clocking of transmitted data. The trans-
mitter initiates data on the negative transition of the clock.
B. RECEIVE CLOCK (RXC)

The Receive Clock input is used for synchronization of received data. The

receiver strobes the data on the positive transition of the clock. (In the ~1 mode,
the clock and data must be synchronized externally.)

78

ACIA—12 Serial Data Communications

Modem Control

The ACIA includes several functions that permit limited control of a data modem.
The functions included are Clear-to-Send, Request-to-Send, and Data Carrier Detect.

A. CLEAR-TO-SEND (CTS)

This high-impedance, TTL-compatible input provides automatic control of the
transmitting end of a communications link via the modem’s “clear-to-send’’ active
low output.

B. REQUEST-TO-SEND (RTS)

The Request to Send output enables the MPU to control a modem via the data
bus. The active state is low.

C. DATA CARRIER DETECTED (DCD)

This high-impedance, TTL-compatible input provides automatic control of the
receiving end of a communication link by means of the modem “’Data Carrier Detect”
or “Received-Line-Signal Dectect’ output. The DCD input inhibits and initializes the
receiver section of the ACIA when high. A low-to-high transition of the Data Carrier
Detect may initiate an interrupt to the MPU to indicate the occurrence of a loss carrier.

Received Data Line (RX)

The Received Data Line is a high-impedance, TTL-compatible input through
which data is received in a serial NRZ (Nonreturn to Zero) format. Synchronization
with a clock for detection of data is accomplished internally when clock rates of 16 or
64 times the bit rate are used. Data rates are in the range of 0 to 500 Kbps when
external synchronization is utilized.

Transmitted Data Lines (TX)

The Transmit Data Output Line transfers serial NRZ data to a modem or other
peripheral at the same range of rates as the received data.

79

Serial Data Communications ACIA—13

PROBLEM: SET UP ACIA, +64, 88, OP, 1S. OPERATE WITH MODEM.
WRITE THE CODE TO SET UP THE ACIA AND BE READY
TO RECEIVE AND TRANSMIT DATA.

CONTROL REG = ACIAC
STATUS REG ACIAC
RCVR REG ACIAD
XMIT REG ACIAD

ANS: LDA A #$03 00000011 RESET
STAAACIAC
LDA A #S$1E 00011110 +64, 8B, OP, IS
STA A ACIAC

CHK LDAAACIAC LOADSTATUS REG
AND A #50C 00001100 CHECK CTS & DCD

L | T [}

BNE CHK
LDA A #$BE 10111110 READY TO
STA A ACIAC RECEIVE & XMIT TR1176-1

80

ACIA—-14 Serial Data Communications

MC14411
BIT RATE GENERATOR
RATE SELECT 23 O-
RATE SELECTg 22 O]
X1 DIVIDERS
CRYSTAL;, 21 O— X8 | paTE
OSCILLATOR DIVIDER | X16 | SELECT |{—
CIRCUIT oG1e
*CRYSTAL 5, 20 O— X64
* %
RESET 10 O—

—O 1
o 17
O 2
—O 16
—O 3
O 15
O 4
—O 5
—o 7
O 6
—O 8
0 14
—O 13
09

—O 18

*SEE FIGURE 2 FOR TYPICAL CRYSTAL OSCILLATOR CIRCUIT.
**QUTPUTS GO TO “1” LEVEL UPON RESET.

MC14411 BIT RATE GENERATOR

RATE SELECT

RESET A B
Xtaljy 1 l l
21
R¢ - mc14411

20
Xtalg,e

R = 15 MQ * 10%
CRYSTAL SPECIFICATION

CRYSTAL MODE PARALLEL

FREQUENCY 1.8432 MHz +0.05% @ 13 pF
Rg 540 ©2 MAX

o 7.0 pF MAX
TEMPERATURE RANGE 00 70°C

81

BIT RATE
CLOCK OUTPUTS

TR1182

019

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14

F15
F16

TR1181

Addressing Modes

Addressing Modes AD-—1

72 MNEMONIC INSTRUCTIONS

6 ADDRESSING MODES

e INHERENT/ACCUMULATOR/IMPLIED
IMMEDIATE

DIRECT

EXTENDED

INDEXED

RELATIVE

TR1063-1

ADDRESSING MODES

The MC6800 Microprocessor has six addressing modes available to the program-
mer. They are Inherent/Accumulator, Immediate, Direct, Extended, Indexed,
and Relative.

A. INHERENT/ACCUMULATOR/IMPLIED

These addressing modes have one-byte instructions and therefore either do not
require addressing a memory location or the addressing information is contained in
the instruction. An example of an /nherent instruction would be to execute a ‘‘clear
carry bit” instruction and would look like this in memory:

Memory Location Memory Contents (Hex)
0100 OC (CLC opcode)

OC (in hex) is the CLC instruction. The result of this instruction would be
to load a zero in the carry bit in the MPU condition code register.

An example of an accumulator instruction would be to execute an ‘‘arithmetic
shift left of accumulator A" instruction and would look like this in memory:

Memory Location Memory Contents (Hex)
0100 48 (ASL A opcode)

48 (in hex) is the ASL A instruction. The result of this instrdction will have the
contents of accumulator A shifted one place to the left. Bit O (LSB) of the accumu-
lator will be loaded with a zero, and bit 7 (MSB) will be loaded into the carry bit of
the condition code register.

_ An example of an inherent memory addressing instruction would be to execute
a Push Data instruction and would look like this in memory:

Memory Location Memory Contents (Hex)
0100 36 (PSH A opcode)

36 (in hex) is the PSH A instruction. Exeuction of this instruction will cause the

contents of accumulatar A to be loaded into memory at the address contained in the
stack pointer register. The stack pointer register is then decremented by one.

84

AD—-2 Addressing Modes

Source input coding to an assembler, written in mnemonics, for the above three
instructions would appear as follows:

CLC
ASL A
PSH A

B. IMMEDIATE

in this mode of addressing, the operand is found in the next one or two memory
locations following the opcode. For example, to “load accumulator A with the hex
number 55", it would look like this in memory:

Memory Location Memory Contents (Hex)
0100 86 (LDA A immediate opcode)
0101 55 (Data)

86 (in hex) is the LDA A immediate opcode. 55 (in hex) is the data. The result
after execution of the above is that hex number 55 has been loaded into accumulator A.

Soyrce input coding would be: LDA A #$55
signifies the immediate mode of addressing.

C. DIRECT

In this mode of addressing, the address is found in the next memory location
following the opcode. This enables direct addressing of the first 256 bytes of memory
(0000 to OOFF in hex). As an example, to load accumulator A with the contents of
memory location 67 (in hex), consecutive memory locations would look like this:

Memory Location Memory Contents (Hex)
0100 96 (LDA A direct opcode)
0101 67 (Address of memory

containing the data)
96 (in hex) is the LDA A direct opcode. 67 (in hex) is the address where the data
is to be fetched from. So, whatever is in memory location 0067 would be loaded

into accumulator A.

Source input coding would be: LDA A $67

85

Addressing Modes AD-—3

D. EXTENDED

This mode of addressing is used to address memory locations above O0FF. The
second memory location of the instruction contains the high-order 8 bits of the address,
and the third memory location contains the low-order 8 bits of the address. For
example, to load accumulator A with the contents of memory location 4057 (in hex),
the consecutive program memory locations would look like this:

Memory Location Memory Contents (Hex)
0100 B6 (LDA A extended opcode)
0101 40 (Address high byte)
0102 57 (Address low byte)

B6 (in hex) is the LDA A Extended opcode. 40 (in hex) is the most significant
half of the address and 57 (in hex) is the least significant half of the address where data
is stored. After execution of the above instruction, the contents of memory location
4057 would have been loaded into accumulator A.

Source input coding would be: LDA A $4057.

E. INDEXED

In this mode of addressing, the number (offset) found in the second memory
location of the instruction is added to the contents of the index register to form a
new ‘“‘effective address’’. The new “‘effective address’’ is the location in memory which
contains the data for the operation or is the destination for data.

The effective address is held in a temporary address register so the content of
the index register is not destroyed or altered. As an example, if the index register
contains the hex AO014 and a load accumulator A, indexed with offset of hex 21 is
executed, the offset of hex 21 is added to the contents of the index register (A014)
to form a new “‘effective address’’ of hex A035.

Memory Location Memory Contents (Hex)
0100 A6 (LDA A indexed opcode)
0101 21 (Offset)

A6 (in hex) is the LDA A Indexed opcode. 21 (in hex) is the offset. To the
index register, the offset of 21 is added to form a new “effective address’’ of hex
A035 (A014 + 21). After execution of the above instruction, the contents of memory
location A035 will have been loaded into accumulator A.

Source input coding would be: LDA A $21,X

Offset Indexed mode

86

AD—4 Addressing Modes

F. RELATIVE

In this mode of addressing, program control may be transferred to someplace
other than the next sequential memory location. It is used for BRANCH instructions
only. Transfer is limited to 126 memory locations back or 129 memory locations
forward from the present location. Since this is a two-byte instruction (two memory
locations), transfer is always referenced from the next instruction which the MPU
would execute if it did not transfer control. This reference point would be the present
value of the program counter after reading the two-byte instruction, or the present
location +2. .

The number of memory locations to branch over is called the “‘offset’” and is
expressed as an 8-bit 2's complement number.

All branches forward are given in a positive 2’s complement number from 0 to 7F
(in hex). All branches back from the present location are represented as a negative
number on 2's complement from FF to 80 (in hex).

TRANSFER FORWARD FROM PRESENT LOCATION

Assume it is desired to branch from the present location of 0100 (in hex) to
location 0147 (in hex). First, it should be verified that the branch is not beyond
the allowable range of +129 locations from the present location.

Final destination = 0147 (hex)
Present location +2 = 0102 (hex)
Number of locations to branch forward over = 45 (hex)

45 (hex) is within our allowable range. The 8-bit 2’s complement representation
of a positive number in the range of 0 to 7F (hex) is the number itself (MSB bit 7 = 0).

Memory Location Memory Contents (Hex)
0100 20 (BRA opcode)
0101 45 (Offset)
0102 XX (Present value of program counter)
0147 XX (Opcode of next instruction that

will be executed)

20 (in hex) is the BRA (Branch Always) opcode. 45 (in hex) is the offset or
number of locations which will be branched over starting with 0102. Therefore, the
next instruction the MPU will execute will be located at 0102 + 45 or location
hex 0147.

Source input coding would normally be: BRA LEVEL,

where “LABEL" is the unique label given to the opcode mnemonic at location 0147.

87

Addressing Modes AD-5

TRANSFER BACK FROM PRESENT LOCATION

Assume it is desired to branch from the present location of 0100 back to memory
location 0090 (hex). This is accomplished in a similar manner as the forward branch,
except the number of locations is a negative number expressed in 2’s complement
from the present location +2. The 2's complément form of a negative number places
a 1in bit 7 (MSB) which, in effect, tells the MPU to branch back rather than forward.

Present location +2 = 0102 (hex)
Final location = 0090 (hex)
Number of locations to branch back over = 72 (hex)

To represent -72 in 2's complement, first write the binary representation of 72 (hex):

72 (hex) = 01110010

Then take the 1's complement: 10001101
and add 1: 00000001
To give the 2's complement: 10001110

-72 (hex) = 8E (2’s complement in hex)

Memory Location Memory Contents (Hex)
0090 XX (Opcode of next instruction
after branch instruction)

0100 20 (BRA opcode)
0101 8E (Offset)
0102 XX (Present value of program counter)

20 (in hex) is the BRA (Branch Always) opcode. 8E is the offset or number of
locations which will be branched back over starting from 0102. Therefore, the next
instruction the MPU will execute will be located at memory location 0090 (hex).

88

AD—6 Addressing Modes

ACCUMULATOR/INHERENT ADDRESSING

—

MPU MPU

RAM RAM

PROGRAM PROGRAM
MEMORY MEMORY

ONE OP CODE

BYTE
INST PC = 5001 5C
GENERAL FLOW EXAMPLE
INCB

TR1064

IMMEDIATE ADDRESSING

MPU MPU
ACCA

O =]
RAM RAM

/\

PROGRAM PROGRAM
MEMORY MEMORY
Two | OPCODE PC = 5002 86
BYTE | DATA 25
INSTR

N w’_—‘\\\\—

GENERAL FLOW EXAMPLE
LDA A #3825

TR1065

89

Addressing Modes AD—7

DIRECT ADDRESSING

<N

MPU
RAM
PROGRAM
MEMORY
TWO
BYTE OP CODE
INSTR ADDR

GENERAL FLOW
ADDRESS
RANGE
0 - FF

PC = 5004 96

MPU

ACCA
=

F2 3A >

PROGRAM
MEMORY

F2

/\J

EXAMPLE
LDAA $F2

TR1066

EXTENDED ADDRESSING

MPU

<::>—1

RAM

PROGRAM
MEMORY

OP CODE
THREE

BYTE ADDR
INSTR ADDR

GENERAL FLOW
ADDRESS

RANGE
0~ FFFF

2A84

PC = 5006

MPU

ACCB
(T

RAM

4E

PROGRAM
MEMORY

F6
2A
84

/_\

EXAMPLE
LDA B $2A84

TR1067

90

AD—8 Addressing Modes

INDEXED ADDRESSING

Nam

MPU MPU
ACCB
)
INDEX D9
REG —p{T7A00
RAM RAM

1A05

/\

PROGRAM
MEMORY
T™WO (| opcope PC 5009
BYTE
INSTR{ OFFSET
GENERAL FLOW
OFFSET
RANGE
0 - FF
MPU
RAM
RELATIVE
ADDRESSING
/\J
PROGRAM
MEMORY
oy [[opcooe
INSTR OFFSET
NEXT OP CODE
/\a
[

(PC+2)+

INEXT OP CODE
OFFSET

91

M

D9

D

PROGRAM
MEMORY

E6

05

/—\

EXAMPLE

LDA B S5 X

PC - 5008

5000

5022

TiOons

cc

/_\)

PROGRAM
MEMORY

27

15

NEXT OP CODE

/__‘
M~

INEXT OP CODE

EXAMPLE
BEQ STOP
STOP EQU $5022

o6y

Addressing Modes AD—9

IMMEDIATE DIRECT INDEXED EXTENDED
LDAA =$AB LDAA SFE LDAA $A X LDAA $4004
86 96 AB B6
AB FE 0A 40

04
LDX #$1F85 LDX S1F LDX $A X LDX $FD20
CE DE EE FE
1F 1F 0A FD
85 20
INHERENT/ACCUMULATOR
ADDRESSING
INC B
5C
PSH A
36
RELATIVE ADDRESSING
BRA START
20 OP CODE
16 OFFSET
TR1071

92

Assembler Techniques

Assembler Techniques AS—1

ASSEMBLER BLOCK DIAGRAM

SOURCE
PROGRAM
/) FILE

/!

FILE
re- Tt
L _F_'.LE_ -
ASSEMBLER

r————9
! TEMPORARY ¢
| SCRATCH
! FILE

|
L |
———— ASSEMBLY 0BJECT MACHINE
LISTING TAPE FILE FILE
OBJECT TAPE
TR109

SUPPORT SOFTWARE — FUNCTIONAL BLOCK DIAGRAM

SOURCE
1| PRoGRAM
| FILE
| E——
ASSEMBLY
0BJECT ASSEMBLER LISTING
TAPE 7 FILE
FILE 7 X
7 < . i
MACHINE ASSEMBLY
OBJECT TAPE fe | o~ Listing
BUILD
I)
MACHI
conlnjrsamos MACHINE iy
LISTING
USER TERMINAL
0BJECT HELP
TAPE MESSAGE
FILE FILE
USER TERMINAL
EXOReiser 0BJECT TAPE
AND EXbug
USER EXbug HELP
INPUT LISTING LISTING

TR1092

USER TERMINAL USER TERMINAL

95

9%

AS—2 Assembler Techniques

SOURCE LANGUAGE

FOR THE M6800 MPU SYSTEM

® 72 MNEMONIC INSTRUCTIONS

® 12 ASSEMBLER DIRECTIVES

ASSEMBLER CHARACTER SET

® ALPHABET A-2Z

® INTEGERS 0-9

® ARITHMETIC OPERATORS + - * /
® PREFIX CHARACTERS

® SUFFIX CHARACTERS

® SEPARATOR CHARACTERS

e DEFINE COMMENT LINE

® PRESENT VALUE OF LOCATION COUNTER

e USED AS AN ARITHMETIC OPERATOR

[4THIS IS A TEST PROGRAM.
IBRA *+7
LDA A SS*NB-3,X

96

TR1033

TR1094

TR1095-1

Assembler Techniques AS—3

ASSEMBLER PREFIX CHARACTERS

%

DECIMAL NUMBER

SPECIFIES IMMEDIATE ADDRESSING MODE

HEXADECIMAL NUMBER

OCTAL NUMBER

BINARY NUMBER

ASCIi LITERAL CHARACTER (20-5F)

LDA A #38A5

LDAB ='C

TR1096

ASSEMBLER SUFFIX CHARACTERS

e & o o o
Xpozxxw

BINARY NUMBER
HEXADECIMAL NUMBER

OCTAL NUMBER
OCTAL NUMBER
SPECIFIC INDEXED ADDRESSING MODE

| ILDA A #0A5H

TR1098-1

ASSEMBLER SEPARATOR CHARACTERS

SPACE

CR (CARRIAGE RETURN)

(COMMA)

97

TR1099

AS—4 Assembler Techniques

RULES FOR LABELS

1. 1-6 ALPHANUMERIC CHARACTERS
2. FIRST CHARACTER MUST BE AN ALPHA

3. LABEL MUST BEGIN IN FIRST CHARACTER POSITION
OF THE STATEMENT

4. ALL LABELS MUST BE UNIQUE

5. LABELS MUST NOT BE THE SINGLE CHARACTERS
A, B, ORX

TR1101

FIELDS OF SOURCE STATEMENT

(1) LABEL (2) OPERATOR (3) OPERAND (4) COMMENT
(MNEMONIC)

B8|OX LDA A #$F3 SAMPLE STATEMENT
STA A PIA2BD STORE DATA TO OUTPUT PORT

TR1100-1

98

Assembler Techniques AS—5

DEFINITION OF THE ASSEMBLER DIRECTIVES

ALPHABETIC LIST OF ASSEMBLER DIRECTIVES

END
EQU
FCB
FCC
FOB
MON
NAM
0PT
O0RG
PAGE
RMB
SPCn

END OF PROGRAM

EQUATE SYMBOL

FORM CONSTANT BYTE

FORM CONSTANT CHARACTERS
FORM DOUBLE CONSTANT BYTE
RETURN TO MONITOR CONSOLE
NAME PROGRAM

OPTION

ORIGIN

ADVANCE LISTING TO TOP OF PAGE
RESERVE MEMORY BYTES

SPACE n LINES TR1102

99

AS—6 Assembler Techniques

NAM

1. THE “NAM” DIRECTIVE:

A) NAMES THE PROGRAM — HEADING TEXT
8) PROVIDES TOP OF FILE AND PAGE 1 FOR PAGING

2. DO NOT USE LABEL

COMMENT
A

~ N
NAM CLPROB 1175 REV001

N— ——

PRINTED OUT
AT TOP OF
ASSEM LISTING

TR1103-1
oPT
———
1. THE “OPT" DIRECTIVE ALLOWS THE USER TO SELECT OR CONTROL
VARIOUS OPERATIONS (QUTPUT) OF THE CROSS-ASSEMBLER

2. DO NOT USE LABEL WITH “OPT"
3. NO OBJECT CODE RESULTS FROM “OPT"

NAM CLPROB

OPT M,S,NOP

TR1104-1

100

OR

Assembler Techniques AS—7

S—

THE “ORG"” DIRECTIVE ASSIGNS MEMORY ADDRESSES

2. DO NOT USE A LABEL
3. ANY NUMBER OF “ORG"” STATEMENTS MAY BE USED
4. IF NO "ORG" DIRECTIVE IS USED, ADDRESSES WILL START
AT ZERO
ORG $500
LDA A #$F0
LDA B #$25
ABA
ORG $3F00
T| ABLE1 FCB ,$AA $F0,25 - - -
ORG 0
T| EMP RMB 1
TR1105-1
EQU
1. THE “EQU” DIRECTIVE IS USED TO ASSIGN A VALUE TO
A SYMBOL
2. NO OBJECT CODE RESULTS FROM THE USE OF “EQU"
s|s EQu $F5 s|seau srs zlaEQu ss
z|A EQu ss z|AEQuss s|s equ $F5
s|s EQu aB
oK GOOoD GOOD
TR1106-2

101

AS—8 Assembler Techniques

1. THE “RMB” DIRECTIVE IS USED TO RESERVE MEMORY

2. A LABEL MAY BE USED

ORG O
sftcH RMB $19
+\TA RMB 2 STCH | 0000
s|rack rRmM8 2 ! %019
1 |NDEX RMB 2 oata | 501%
sTack | o8
ORG $4004
p{1a1AD RMB 1
p{1A1AC RMB 1 INDEX | 0010
p|1A1BD RMB 1 1€
p|1a1BC RMB 1
§ 192110/
SPC
1 THE “SPC" DIRECTIVE CAUSES VERTICAL SPACING IN
ASSEMBLED LISTING
2. DO NOT USE LABEL
SPC 5
SPC SOF
TR1108-1

102

Assembler Techniques AS—9

PAGE
1. THE “PAGE" DIRECTIVE ADVANCES THE LISTING TO THE
NEXT PAGE

2. USE NO LABEL WITH “PAGE"

NAM CLPROB

OPT M= MCLP, OT=0TCP
ORG O

TCH RMB $19

EMP RMB 2

e 2]

.
.

PAGE

TR1109-1

FCB (FORM CONSTANT BYTE)
1. THE “FCB” DIRECTIVE IS USED TO FORM TABLES IN MEMORY

ORG $3F00
T|ABLE1 FCB 0,$AA $FB,25,@377,10
MEM MEM
ADR CONTENTS
3F00 00
3F01 AA
3F02 FB
3F03 19
3F04 FF
3F05 00
3F06 0A

TR1110-1

103

AS—10 Assembler Techniques

FDB (FORM DOUBLE BYTE)

THE “FDB” DIRECTIVE IS USED TO FORM TABLES IN MEMORY WITH
DOUBLE BYTES OR 16-BIT DATA

1.

FCC

1.

ORG $3F00

ABLE FDBO, $AABB, 10000,@55552, TABLE

MEM

ADR

3F00
3F01
3F02
3F03
3F04
3F05
3F06
3F07
3F08
3F09

(FORM CONSTANT CHARACTERS)

MEM

CONTENTS

TR11111

THE "FCC” DIRECTIVE IS USED TO FORM TABLES IN MEMORY WITH
ASCII CHARACTERS

ORG $8A00
ESS1FCC / ERR 208 /

ESS2 FCC 16, TEST ROUTINE 6

104

RESULTING OBJECT CODE

8A00

[+
>
DWN = E; TMOODPOONONHWN =

20
45
52
52
20
32
30
38
20
20
54
45
53
54
20
52
4F
55
54
49
4E

8A15
6
7
8

45
20
36
20

TR1112-1

Assembler Techniques AS—11

END

1. THE ASSEMBLER DIRECTIVE “END” MARKS THE END OF A
SOURCE PROGRAM WHERE ONE OR MORE SOURCE PROGRAMS
FOLLOW.

2. NO LABEL SHOULD BE USED WITH ""END"

END

TR1113-1

MON

1. THE “MON‘ DIRECTIVE MUST BE USED TO SIGNAL THE CROSS-ASSEMBLER
THAT THE END OF THE SOURCE FILE HAS BEEN REACHED.

2. IN ADDITION, CONTROL IS RETURNED TO THE MONITOR.

3. NO LABEL SHOULD BE USED WITH “MON".

MON

TR1114-1

105

AS—12 Assembler Techniques

[x]
=]
o
m

EQU

FCB
FCC
FDB
RMB

NAM
14}
PAGE
SPC

SUMMARY DEFINITION
ASSIGN ORIGIN OF PROGRAM COUNTER

EQUATE A SYMBOL TO AN OPERAND

FORM CONSTANT BYTE

FORM CONSTANT CHARACTERS
FORM DOUBLE CONSTANT BYTE
RESERVE MEMORY BYTES

DEFINE END OF SOURCE PROGRAM
RETURN TO CONSOLE

NAME THE PROGRAM OR INSERT TEXT
ASSEMBLER CONTROL OPTIONS

MOVE PAPER TO TOP OF FORM

VERTICAL SPACING OF PROGRAM LISTING

106

FUNCTION

DEFINES THE NUMERICAL
ADDRESS OF THE FIRST
BYTE OF A SUBSEQUENT
SEGMENT OF THE CODED
PROGRAM.

EQUATES A SYMBOLTO A
NUMERICAL VALUE,
ANOTHER SYMBOL, OR AN
EXPRESSION.

ASSIGN VALUES AND
ADDRESSES OF DATA, AND
ASSIGN ADDRESSES OF
SCRATCH AREAS OF
MEMORY.

CONTROL THE SEQUENC-
ING OF SOURCE PROGRAMS
THROUGH THE ASSEMBLER.

FORMAT CONTROL
(SOURCE PROGRAM AND/OR
ASSEMBLER LISTING)

TR111%

Assembler Techniques AS—13

FERDY
OLD DEF1:Z

3
1

'Y

| O
T

~u

TEF1C = S1:42EDT nz

-
fis
&

g HAar ITEMZ
110 OFT MEM

1 ¢ ADDITION OF THO MULTIPLE-FFECTZION
e EINAFYv-CODED-DECIMAL MUMEBER .
.
HE EOL = FECIFIED 2-EVTE OFERPAMDI.
-
e EEGIM "UEFOUTINMNE.
OFs E10nn
ECD LDR B oNME
LD ADDF LOARDT DATA ADDREZC,
L
HE®T LD® A NHE-14 ITHET LOOF
ADC A ceMB-1. .
DAA
TR A ZeME-1...
DE::
LEZ E
EME NME!'T EMD OF LCOF
FTZ END OF ECD ZUEPOUTINE,
.
.

e EEGIN MAIN FROGPAM......
e TEZT OF IUEFOUTINE ECD.
(s S SRl
sE1DF INITIALIZE CTCh FNTF.
s LOARDZ RADDREST OF F.

IT.L ADDR

AR BCD

HoP

EFFR e-1 END OF MAIN FPOGRAM,

*

-

¢ ALLOCATE A DATH AFER IN
e FERD-WFITE MEMOPY.

OFG $0100

. *1'FOF THE TUEBPOUTINE.
AODF FME &
. 2 FOF THE MAIN FPOGKAM,
F FME NE
i FME NE
FEZ PME NE

EMD
S0 MON

Listing of the Source Program “ITEM2" TR1116

107

AS—14 Assembler Techniques

ASSEMBLY LISTING FORMAT

PAGE NUMBER
‘ PROGRAM NAME (FROM NAM ASSEMBLER DIRECTIVE)

| —— TIME-DATE (FROM HOST COMPUTER)

PAGE 1 PGM9 03/13/75 13.56.00

00010 NAM PGMS9
00020 * REVISION 1
00030 0PT M=PGMIM
00050 0000 0015 RMB 21 TEMP AREA FOR STACK
00060 0015 0001 STACK RMB 1 START OF STACK
00080 0016 BEO0015 START LDS «STACK
00080 0019 OE cLl * PERMIT IRQ INTERRUPTS
t L COMMENTS FIELD
OPERAND FIELD
OPERATOR (MNEMONIC) FIELD
LABEL FIELD
MACHINE CODE
MEMORY ADDRESS

—SOURCE STATEMENT LINE NUMBER

Object Tape File

The assembler when instructed by an **OPT OT =filename " will generate an

ﬂhu-t‘l T""" File which can be used ¢ to generate & paper tape OF Cassetie of the

machme language object code generated. The object tape and/or object tape file can
be used as input to the machine file for use by the Simulator. The object tape format
is also accepted by the EXbug firmware to load the object program into ah
EXORciser.

Format Object Tape File

SNENHIEEEED -: 1E

113010 N1 SSFEOLSTOR NS ORRL NSET
'lllllll Fe 3EEDO113FENL 'lé-E!FHIll 3
E DL O0ANS 01 IS TISSL00

dl'-.llllllllFl

108

e e el e . e T - e - en

ncq"»m“mm

v s o

etibge B NTIRS

- . D e, St U o Wity D it S At W4, el 0 O S8 R, 3. Bl
B i e P e S s S S S T P e SOy bs G Sie Sy < S
—eamn. s

L T L T
B oy e .“4'. - . Iy
e .

P ¢ 4 o gt s bor el D 4 00 0.2 S 00

- . -w b

’

!
.
...p—-o--—.‘."‘. n
BOVR, L+ W TEI +0s SNl vaRtRe

- ’ N . e cae e

s oot

1]
™ s s 0 el 20 A VA0 B e Wi 655 bl 000 U S0

5

g

- —_, s T - " 088 S S0 SIS 100 S w0 PSSR
————
250N 11 eemmey
A v i g e
¥

»
P TEIe + s e 2 e oo D4 ovu P,
v G ¢ + P o ettt 3t 1 o A

. L. e Ldbe i

) 2

_— e s

; SUPPORT

SOFTUAME

PROGRAMMABLE LOGIC - ve casy way

haruy oy

fientas
WD 200 RN AP T S P wre P ihis VD sl) N 5 et W PR VO s B o s
YN SNS SN S5 SU5 SN SN S5 SN 1
i s v e e

——
——_ !
-‘.“

& &
;“*—--L,_J AT I T T

Emro A A A A

S = - S O

}M.

...
s L
s
R soisvouss- Jhay
v-..J ’
pon
—

i

L‘ ~0~>v'

o

-

T

[P SR

PrOEpe

- oW

. —

~

s e

v f.aon.»«-« i -
¥}

g
LR
.-

il At G - B o $ 8

o.od

T

s

GEE

Motorola software for the M6800 microcomputer family is
currently operating on the General Electric Information
Services International Network:

MPCASM — M6800 Cross Assembler converts symbolic
source code to machine-language with listing.

MPSSIM — M6800 Interactive Simulator duplicates the
execution of machine-language instructions

assembled with the cross assembler.

HELP — The HELP Program provides the user of
Motorola support software with real time
documentation of the software. This documen-
tation includes abbreviated operating pro-
cedures.

MPBVM — Build Virtual Machine program simplifies the
file management problems associated with
developing microprocessor programs.

TO ACCESS THE SOFTWARE:

1. Contact your local G E Information Services
Sales Department and request service under
the NSS (Network Software Services) cata-
log “AQ36.”

N

. If you are a new user also ask the G E sales-

man for “Command System Manual”’ and
“Editing Commands Manual” for Mark Il
Foreground System.

w

. For detailed programming and support soft-
ware information order your copy of the
“M6800 Microprocessor Programming Man-
ual”’ Motorola Semiconductor Literature Dis-
tribution Center, P. O. Box 20924, Phoenix,
Arizona 85036.

. Sign on with your TTY (or other terminal) and
you will be up and running.

S

109

MG800 SUPPORT SOFTIGME

The sample program displayed on this and the next three pages
used the GE Mark Il Service system to give the new user a
capsule view of the procedure for using Motorola’s M6800 Sup-

port Software.

Item n describes preparation of the sample program using the

edit features of timesharing.

Item] demonstrates how the user can: a) create a machine
file, b) change the machine file’s size, and c) alter the label to a

meaningful message about the application being developed.

Item shows the conversation to assemble the sample pro-
gram, and the listing of the program generated by the assembler.
Item EJ explains the simulator conversation and a step by step

simulation of the sample program.

Item B describes the technique to punch a paper tape of the
Object Tape File. This tape is compatible with the Motorola

EXORciser.™

I creare a sampLe PROGRAM

SRANBUSK 2SR

ID:

EYITEM- FIY
HEW OF OLD-
HEW Pi3M
RERADY

100 NAM PEM
OFT M=MEMF1 EPECIFY MACHINE FILENAME
apPT HPEF1 ORJECT TAPE FILENAME

OFT ZWMEOLE ZELECT PRINTING OF
ari

MEBOLE

COUNT EOL 932 & INDICAT OCTHL MUMEER
ETRET LDE #3TACK INZ ZTRCK POINTER

LD ADDR

LDA E =C0UMT
EACK LOAA 10 DIRECT ADDREZZIMG

CME A 2y INDEXED ALDR ING

EBED FOUNMD RELATIYE ADDEETIING
DEX IMPLIED ADDREZZING
DEC B HCCUMULATOR OMLY ADDRESZING
EME ERC
WHI WALT FOR INTERRUFT
TP
FOUMD

ZUBRTH JUMF TO ZUEROU) INE
EMDED ADREZZING

ATEMENT HOTE TRUMCATION 012
ZUERTN TRE COMMENT FIELD TRUNCATIONULIZZ
ADDA EYTE ZET MOZT SIGMIFICANT E11

&TZ RETURN FROM ZUEROUTINE

&0 IIRATCH ARER FOR STHA
EME 1 ITSRT OF ZTACK
FCE B30 FORM CONZTAMT EVTE
F10:%4 F INDICATET HEXADECIMHL
HDDF FOE DATA FORM COMITANT DOUELE
DATA FOO ~ZET- FORM DATA ITRING A

TTE
I

012345

300 SHD
410 MOM
TR
FEADY

0 OrRAA BYTE ZET MOZT ZIGHIFICANT BIT
105 & PEVIZION 01

EDI REZ

RERDY
REF

SERDY

Enter HHHH for learning character so the computer can
calculate your terminals speed (30 cps. 120 cps. etc.)

Enter your user number and password

Optional feature (enter carriage return to bypass)

Assign FORTRAN system

Create new file with filename "PGM"’

Ready indicates system is ready to acceptdata or command

NOTE: The line number includes the first space follow-
ing the number; allow for this space character while
entering the program.

The first record should be a NAM assembler directive:
the first six characters of operand will appear in the
assembler listing header.

The ORG assembler directive sets the program counter.
Enter the program: only one space between a line number
e
spaces separating the fields.

The END assembler directive informs the assembler this is
the last record of this assembly.

The MON assembler directive informs the assembler this is
the last file to be assembled.

SAV is the command to save the new file just created.

Examples of program changes; by overwriting and by
inserting a new line.

EDI RES is the command to resequence the program
starting with line number 100 and sequencing by 10.

REP is the command to replace (or update) an existing file.

110

EJ assemsLe The SampLe PROGRAM

RUN MPZHIM

Call the cross assembler and cause it to run.

MPCRSM 01:40EDT 043075 The release number is changed as the cross
assembler is updated with improvements.

MOTOROLA SPDs INC. OWNS AND IS RESPONSIBLE FOR MPCASM

o E i fi f
COPYRIGHT 1973 % 1974 BY MOTOROLA INC nter Sl (source input) filename of the

program to be assembied.
MOTOROLA MPU CROSS ASSEMBLERs RELEASE 1.4 The contents of the Label Buffer Area from

the machine file MEMFI.
ENTER 3I FILENAME

7Pi5M

FILE”S LRBEL:

SOURCE FILENPME: PiGM
RUTHOR: JOHN DOE

_— Program counter (hexadecimal).

Line number.

PRSE 1 Pi5M 043075 01:40.00 Hexadecimal instruction, data, or value.
w An asterisk (*) may be used as the first
20190 Blaly PN character of a comment statement.
o010 - REVISIDN 01
no1z0 oPT M=MEMF 1 SPECIFY MACHINE FILENAME

00130 oPT O0=TRPEF1 OBJECT TAPE FILENAME
001404‘\-*-—-* aPT 3YMBOLS SELECT PRINTING OF SYMBOLS
00150 0100 Ori3 256
D010 IJUU_, COUNT EQ 3 ¥ INDICATES OCTAL NUMBER
00170 0100 3E 0132 START LDS #3ITACK INZ STACK POINTER
0 010 0135 % - . . .
dﬂ}‘;g 3} g: FS é; 35 ‘ng B JBgZNT The # indicates immediate addressing.
00200 0103 25 OA BACK LDA A 10 DIRECT ADDRESSING
00210 010R A1 02 CMP A 29X INDEXED ADDRESIING
00220 010C 27 0S5 BEQ FOUND RELATIVE ADDEESSING
00230 010DE 03 DEX IMPLIED RDDRESSING
00240 010F SA DEC B HCCUMULATOR ONLY ADDRESSING
00250 0110 &8 Fn BNE BARCK
00250 0112 3E WHI WAIT FOR INTERRUPT

The missing line 270 was a SPC 1 assembler
10230 0113 BD 0119 FOUND J3R SUBRTN JUMP TO SUBROUTINE directive.
00230 0115 FE 0100 JMP 3TART EXTENDED ADRESSING
anz00 + COMMENT STRTEMENT NOTE TRUNCATION 01234567390123
00310 0113 1s SUBRTN TRB COMMENT FIELD TRUNCARTIOND12
00320 011R BR 0133 ORA A BYTE SET MOST SIGNIFICANT BIT
00320 011D 33 RT3 RETURN FROM 3SUBROUTINE
00350 011E 0014 RMB 20 ICRATCH AREA FOR STACK
00350 0132 0001 STACK RME 1 START OF STACK
00370 0133 30 BYTE FCB $30 FORM CONSTANT BYTE
00330 0134 10 FCB $10, 34 % INDICATES HEXADEC IMAL
01395 04 \ The $ indlcates a hexadecimal value follows.

00330 ADDR FDE DATA FORM CONSTANT DOUBLE BYTE
00400 DATA FiCC <SET~ FORM DATA STRING C(ASCII
00410 END

NOTE: For more detailed information
IYMBOL THBLE as to specific meaning of mnemonics and
the details of each program refer to the
M6800 MICROPROCESSOR PROGRAM-
RDDR 0135 BACK 0103 BYTE 0133 COUNT 0003 DATA 0133 MING MANUAL.
FOUND 0113 STRACK 0132 START 0100 SUBRTN 0113

111

I3 simuLare THe SampLe PROSRAM

RUM MPIZIM

Enter the MF (machine file) filename of the
MPEEZIM 01:42EDT 0432075 machine file to be simulated.

The contents of the Label Buffer Area from
the machine file MEMFI.

Register heading:

MOTOROLA ZPDs IMC. OWN:
CORYRIGHT 13

AMD IZ RESPONZIBLE FOR MP3IIIM
1374 BY MOTOROLA 1MC Input and output base hexadecimal

Instruction address

Operator mnemonic code

Effective operand address

Program counter

Index register

Accumulator A

X
A
B Accumulator B
C
S
T

MOTOROLA MPU ZIMULATOR, RELEAZE 1.2

ENMTER MF FILEMAME
THMEMF1

FILE"Z LABEL:

ZOURCE FILENAME: PiGM iti i
FOTHOR JoHN TOE gom'i(mo.n code register

HH I8 OC ER P %A = 3 T tack pointer)
GO00 eee VOO0 0000 D000 00 00 000000 0000 000e0000 Time cycles (always decimal)

TIM

0F s FOF 10N, T 0C Simulator commands separated by period

. T SM 0A,54 Set memory location A to
":': 4y ':'::' ::‘ "]' pououoen 32 000UD0% contain 54
.l oo =3 .
.01 00603 T SR P 100 Set register {Program Count-
*01 LDA As000Re010A uononL: er) equal 100)
.01 CMP Aen13Ae0100 > D0Non1S TOC Trace C instructions
+01 s010Den1L 200 0132 0000022 Simulator command Display Memory; begin-

2 OOOZ00e0130 0000

S4 000000 0130 0000

00MO00 0130 0000037
S

*01 JER eN131e011%3 21
0113 TRAB e0113«011A
+011A ORA Ae0123e011D
HH IA oc ER P T

*011D RTS 01320115 0133 D4 S4 00NOODeD ooeoo42
*0115 JMP ¢0113e0100 0133 D4 5S4 0DONOOD 0132 0000045
«0100 LDE «0102e0103 0133 D4 S4 000000 0132 0000042
7DM 100,3B

ning with location 100, display 3B (hex)
bytes (note the right margin contains the
literal equivalent of the printable characters;
the periods show nonprintable characters).

0100 2E 01 32 FE 01 356 Cs 03 35 0A AL 02 27 05 09 SA (.2..8...0..7..2
0110 25 F& 3E EBD 01 13 7E 01 00 15 BA 01 33 33 00 00 %.>. . «39..
0120 00 00 00 00 00 UD 00 00 00 00 00 00 00 U0 D0 00 ..ceeeencanccans
0130 00 01 16 30 10 04 01 33 53 45 5433ET

7R3I.D Simulator commands: RS restore registers;
D display registers.

0000 see 0000 0000 DUO0 00 D0 0000OO OUOL 0000000

2EX Simulator command E X exit simulator

NOTE: Hexadecimal input to the simulator
requires the first character be numeric (i.e:

5 =
PROGRAM STOP AT 0 to enter the hex. value ’C’* enter ‘0C"’)

OLD TAPEF1 calls the formatted tape
/ image so it may be punched and listed.
OLD TAPEF1 List the Object Tape File TAPEF 1 without

heading. Turn on punch device before

READY entering carriage return.

LISTHH

300500004344521B S0 . .. indicates a header record
S11301003E0132FE0136C603950AA1 0227 05035ASH

S11101102AFS3EBDO1197E010016BAN13333F0 S1...indicates a data record
S10B01333010040133524554F4

$3030000FC S9...indi an end-of-file record
BYE Sign-off system (enter goodBYE)

Once a machine file has been created and configured the Build
Virtual Machine program need not be run until the configuration
needs changing.

K3 create a masuine Fie

RUM MFEYM Call the Build Virtual Machine program and
cause it to run.

MEEYM

147 30-75 Name of program running.

MOTOROLA

SPDy IMC. OWNT AND 13 RESPONS1ELE FOR MPRVM
COPYRIGHT 1373 % 1374 EY MOTOROLA INC

MOTOROLA MFU BUILD YIRTUAL MACHINE. RELEAZE 1.4

ENTER “HP HP E- FOR MORE HELF

FMF MEMF1 Fetch the machine file named MEMF1
*eeeHTTN: 22 o . . .
FILE"T LRAEEL: Indication that the machine file MEMF1 did
*e DEFAULT “IRTUAL MACHINE FILE UZED eee notexistand that a file was created assuming

THIT FILE IZ ZETUP FOR 4k (40957 WORDS OF the default parameters.
MEMORY AMD A LAST WORD ALDR OF BOFFF.

MPEWM S TI AND Lt COMMANDE TO CHANGE THE The contents of the default Label Buffer
FILE"S LAEEL DR IT"3 L WORD ADDRESS «XIZE Area.

OF MEMORY:>. THE COMMAND “HF TI+E" WILL
THE FORMAT OF THE MPEYM T1 COMMAND.
FLW D1FF

Change this machine file's size by setting a
new Last Word address (hexadecimal value
1FF was entered).

¥ ZOURCE FILEMAME: FPiGM

EMTER TITLE TEXT Set new information into the Label Buffer
¥ AUTHOR: JOHH DOE Area for this machine file (MEMF1).

ENTER TITLE TEXT

M0 Display the Machine File Organization.

YIRTUAL MACHINE FILE MEMF1

LHAEBEL:
FILENAME: PGM
ALUTHDR: JOHM DOE

LAZT WORD ADDREZE 1FF

MACED LIBRARY LIZTING

FEMARINING CHRARACTERS

EX is the command to exit the Build Virtual
Machine program.

PROSRAM STOP AT O

113

LanGUdGe OF THE

MICROPROCESSOR INSTRUCTION SET
ALPHABETIC SEQUENCE

ABA Add Accumulators

ADC Add with Carry

ADD Add

AND Logical And

ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

BCC Branch if Carry Clear

BCS Branch if Carry Set

BEQ Branch if Equal to Zero

BGE Branch if Greater or Equal Zero

BGT Branch if Greater than Zero

BHI Branch if Higher

BIT Bit Test

BLE Branch if Less or Equal

BLS Branch if Lower or Same

BLT Branch if Less than Zero

BMI Branch if Minus

BNE Branch if Not Equal to Zero

BPL Branch if Plus

BRA Branch Always

BSR Branch to Subroutine

BVC Branch if Overflow Clear

BVS Branch if Overflow Set

CBA Compare Accumulators

CcLC Clear Carry

CL! Clear Interrupt Mask

CLR Clear

CLv Clear Overflow

CMP Compare

CcOoM Complement

CPX Compare Index Register

DAA Decimal Adjust

DEC Decrement

DES Decrement Stack Pointer

DEX Decrement Index Register

EOR Exclusive OR

INC Increment

INS Increment Stack Pointer

INX Increment Index Register

JMP Jump

JSR Jump to Subroutine

LDA Load Accumulator

LDS Load Stack Pointer

LDX Load Index Register

LSR Logical Shift Right

NEG Negate

NOP No Operation

ORA Inclusive OR Accumulator

PSH Push Data

PUL Pull Data

ROL Rotate Left

ROR Rotate Right

RTI Return from Interrupt

RTS Return from Subroutine

SBA Subtract Accumulators

SBC Subtract with Carry

SEC Set Carry

SEl Set Interrupt Mask

SEV Set Overflow

STA Store Accumulator

STS Store Stack Register

STX Store Index Register

suB Subtract

swi Software Interrupt

TAB Transter Accumulators

TAP Transfer Accumulators to
Condition Code Reg.

TBA Transfer Accumulators

TPA Transfer Condition Code Reg.
to Accumulator

TST Test

TSX Transfer Stack Pointer to
Index Register

TXS Transfer Index Register to
Stack Pointer

WAI Wait for Interrupt

INSTRUCTION ADDRESSING
MODES AND ASSOCIATED
EXECUTION TIMES
(in microseconds assuming-a 1 MHz clock)

(Dual Operand)

ACCX
Immediate

Direct
Extended
Indexed
Implied

2> >
zooQ
ooO
x x x

R EER

es e e

BB eNe e e NeNNNS ® o es oo 0o

o 88 S e ARS8 8 S e S e e AL S e e s s e e e st e W eees e eWWWS

1%
=3
>
x

CEbeNNNNRe s s sNNNeNNGs s hbhoNssssossnnos

S e NS S 88 s ONS a0t eI eLWNS SIS s eLENS s es s sesss N0 escese s NN

e RO DUNeseReseDN0Ne enheNNNNAOWS eOasesNeNOAEDesesssssecsssesnssscsssdOarnsse

.
.
.
.
3
.
.
.
4
5
5
3
.
.

R I N R R N N R R R N N Ny N N N N N NN N O N O N I Y

c e e NS s e MNNDOE I NS e NN OINOINNDONDES S NNSINIDNNONG SO0t oNS St NNBOGCS

z
(9]
c s e e e e e s e s e e s e s e s e eINe eSO E S S0 INSs IS eSS S S s eee 00t s NS e

cees e
cs oo e

LIST OF ASSEMBLER DIRECTIVES

END End of Program

EQU Equate Symbol

FCB Form Constant Byte

FCC Form Constant Characters
FDB Form Double Constant Byte
MON Return to Console

NAM Name

OPT Option

ORG Origin

PAGE Top of Form

RMB Reserve Memory Byte
SPC Space Lines

ACCX (accumulator only) Addressing

In accumulator only addressing, either accumula-
tor A or accumulator B is specified. These are one-byte
instructions.
Immediate Addressing

In immediate addressing, the operand is contained
in the second byte of the instruction. No further
addressing of memory is required. The MPU addresses
this location when it fetches the immediate instruction
for execution. These are two/three-byte instructions.
Direct Addressing

In direct addressing, the address of the operand is
contained in the second byte of the instruction. Direct
addressing allows the user to directly address the low-
est 256 bytes in the machine; i.e., locations zero through
255. That part of the memory should be used for
temporary data storage and intermediate results. In
most configurations, it should be a random access
memory. These are two-byte instructions.
Extended Addressing

In extended addressing, the value contained in the
second byte of the instruction is used as the higher
eight-bits of the address of the operand. The third byte
of the instruction is used as the lower eight-bits of the
address of the operand. This gives one a 16-bit address
for the operand. This is an absolute address in memory.
These are three-byte instructions.
Indexed Addressing

In indexed addressing, the value contained in the
second byte of the instruction is added to the index
register lower eight-bits in the MPU. The carry is then
added to the higher order eight-bits of the index regis-
ter. This result is then used to address memory. The
modified address is held in a temporary address regis-
ter so there is no change to the iudex register. These
are two-byte instructions.
Implied Addressing

In the implied addressing mode the instruction gives
the address (i.e., stack pointer, index register, etc.).
These are one-byte instructions.
Relative Addressing

In relative addressing, the value contained in the
second byte of the instruction is added to the program
counters lowest eight-bits plus two. The carry or bor-
row is then added to the high eight-bits. This allows
the user to address data within a range of —126 to
+129 bytes of the present instruction. These are two-
byte instructions.

BOOS EAST MCDOWELL ROAD, PHOENIX, ARIZONA 83008

114

3931-4 PRINIED 10 USK 678 TRPERIAL LITHD 972122

. %

R .
u-,_‘.. a2 oo e mumm.m-umm-mmm

u-v e 328 U 4 Bt 124 i 47 s 270 D o G e 00 A 2t A
.l e o 1 e ot 1. o . . S
—en

“""‘-- e A ROD D’ P AT SO 105 FBR PTIUPY 48 AP SIS SRS SN e

" SUPPORT
olFTlldre

I'Ilﬂﬁllilllllllﬂlllll lIlﬁIB — the easy way

Motorola’s M68BSAM Cross Assembler for the M6800 microcom-
puter family is currently available as a remote batch program
operating on the General Electric Information Services Inter-
national Network. Remote batch processing provides substantial
cost savings to users who do not need assembly results immediately.

PR DS e S A e M 208 Al e Ol SD sl s P 5 il s W

[N SN SN 2N SN SN S P P} 1O ACCESS THE SOFTWARE:
e e e 1. Contact your local GE Information Services Sales
i Department and request service under the NSS (Network
Software Services) catalog “AQ36".

2. Ask the GE salesman for
® Command System Manual
® Editing Commands Manual
® Foreground-Backgrpund Interface
Reference Manual
® Foreground-Background Interface User’s Guide

3. For detailed programming and support software infor-
mation, order your copy of the “M6800 Microprocessor
Programming Manual” from Motorola Semiconductor
Literature Distribution Center, P. O. Box 20924, Phoenix,
Arizona 85036.

4. Sign on with your teletype (or other terminal) and you
will be up and running.

pove -
P

e

L

MOTOROLA Semiconductor Products Inc.

Y C e — P

115

MGB00 SUPPORT SOFTUWAPE

The M68SAM is a subset of the MPCASM assembler. M68SAM
always generates a list file and an object tape file. The M68SAM
supports the following OPT assembler directives:

e DBS ® LIST (Default)

e DB10 ® NOLIST

® DB16 (default)

Any other OPT assembler directive will cause an error message:
****ERROR 217

If the assembler output is to be simulated, the foreground pro-

gram MPBVM is recommended to load the object tape file into

the machine file.

Item illustrates the preparation of a source program.
Although none are shown, edit commands may be used to modify
the file.

Item BB shows the use of the input driver program to initiate
a background assembly.

Item [} demonstrates a status check for an initiated back-
ground job; and cost of a completed job.

Item 8 shows the use of the output driver in retreiving
assembly results.

Item B explains the generation of an object tape. The format
of this tape is compatible with Build Virtual Machine and
Motorola provided loaders.

item @ is an annotated assembly listing.

I creare 3 SameLe PROGRAM

Enter a series of H’s for learning characters so the computer
can calculate your terminals speed (30 cps. 120 cps. etc.)

Enter your user number and password

Optional feature (enter carriage return to bypass)

CYITEM- FIY
HEW OF OLD- Assign FORTRAN system
HEH P Create new file with filename “PGM"”
RERDY Ready indicates system is ready to accept data or
. - . command.
100 MHAM FiEM
110 I0M 01.A NOTE: The line number includes the first space follow-
120 5 ing the number: allow for this space character while
1 # IMDICATEZ DCTAL HUMEER entering the program.
ITRRET LD= TRCE IMZ ZTACK FPOINTER
LI ADTF i The first record should be a NAM assembler directive:
LDA E &COUMT the first six characters of operand will appear in the

BEACE LDAR 10 DIRECT ADDRE assembler listing header.

;E; EDEHI; érE‘ﬁET?IIEHgE;E The ORG assembler directive sets the program counter.
DE« IMFLIED ALDFEZZIMG Enter the program: only one space between a line number
DEC B ACCUMULATIOR OMLY ADDREIZING and a label: otherwise the assembler accepts one or more
EHE ERACH spaces separating the fields.

WAI WRIT FOR IMTERRUFT
B

IPCO1
FOUMD JIF ZUERTH JUMF 7O ZUERDUTIME
JMFP ZTART ESTEMDED ALDREIZIMG
* COMMEMT ZTATEMENT HOTE TRUMCSTIOM &
CUERTH TAE COMMENT FIELD TRUNCATIDMOL
OFAA EVTE ZET MOIT TIGHIFICAMT EIT
3 FETURM FEOM ZUERDUTINE

2CRATCH AREAR FOR ZTACK

TTACK 1 ZTART OF ITRLIE

EYvTE FCE 320 FORM COMITANT EYTE

;E E. 3108534 F INDICATEZ HE.‘-:;DECIMRL The END assembler d_lrecnve informs the assembler this

ADDFR FDE DATA FOFM COMZTSHT DOUELE EVTE is the last record of this assembly.

DATH FCC -ZET - FORM DATR CTRING <A The MON assembler directive informs the assember this

END is the last file to be assembled.

MO

SAV is the command to save the new file just created.

FEADY

116

RUN MB3SAMI Call the background assembler and cause it to run.

1132 09EST 10-720-7%

MOTOROLA ZFDs INC. OWNS AND IS RESPONSIBLE FOR MESSAML
INITIRTE BRCKGROUND ASSEMEBLERs RELEASE 1.0

Filename of foreground source program to be assembled
in background.

ZOURCE FILE MNAME Three priorities are available:
/ H — High Priority. Job will be initiated within 15
FRIDRITY: ¥ minutes. (Highest cost).
(C/R) — Normal Priority. Job will be initiated within
COMTROL FILE MAME: ME 3 hours.
JOB ID = HG1IT7 L — Low Priority. Jobmay be deferred for overnight
processing. (Lowest cost).

FROGRAM ZTOP AT 1190 The control file includes foreground-background interface
commands and control for the background program.

ID of background job. This will be needed later to
retrieve results.

ETE Sign off and allow time for job to run in background.

EX cuecn status OF BaGHEROUND JOB

Background Job ID.

HE17 DONE
00015 RETURNED
ZUEMITTED
UT REPORTS
1$$-RETLURNED

Status indicates job is complete

FETURNED OBJECT TAPE File

FETURNED ASSEMBLY LISTING File
N5170212-RETURNED

The other files are system-generated reports not normally
RERDY referenced.

Job's status is returned by the system; ‘DONE’ indicates
the job is complete and output may be retrieved. Other
status messages are explained in the GE Foreground/
Background Interface Reference Manual.

EREZ MGR1IT Check the cost of the Background job.
ACTINITY AFPROIMATE CRUCZ

117

I3 rertrieve outrur

Retrieve the output from background assembler.

11:S4EZT

MOTOROLA ZFDs IMC. OWHE AND [Z FEZFOMZIELE FOR M AMD

FETRIEYE BRCKEROUND AZSEMELER OUTFUT. RELERZE 1.0

JOE 1D FHELT Enter ID of Background Job
Name of file in which assembly listing will be saved;

LIZT FILE: TREMLIET a carriage return indicates the listing is not to be
retrieved.

LIZT FILE - . X X

DEJECT FILE: TTRFEF1 I_Iame of file |.n vyhnch object o_utput will be‘saved; a car-
riage return indicates the object output is not to be
retrieved.

JEJECT FILE ZAYED

COMTROL FILE TO DELETE: Control file is no longer needed, and should be purged.

L _ Purge all output from background job after desired files
¥I5 FURGED have been saved. If output is not purged at this time, it
3 will be done automatically after 36 hours.

M317 PURGED

FROGRAM ZTOF AT SZ0

NOTE: The drivers M68SAMI and M68SAMO were
written to simplify the use of background
processing. Additional flexibility and, in
some cases additional cost savings, may be
achieved with user-supplied interface com-
mands. Information about the foreground-
background command interface is available
from the GE manuals listed on the cover or
contact your GE Account Representative.

3 punca a paver Tare

List the Object Tape File without heading. Turn on
ZTHH THFEF1 punch device before entering carriage return.

SO. . . indicates a header record
HSA .
S1:.. indicates a data record

S9. . . indicates an end-of-file record

118

I3 assemsLy LisTing

LIST ASMLIST Name of list file created by M68SAMO
(see Step 4. . . Retrieve outputj

ASMLIST 11:S8EST 10-30-75

SNUMB = MNG17s RCTIVITY @ = 01y, REPORT CODE = 03» RECORD COUNT = 00052

1 HMOTOROLA Mé
The release number is changed as the cross

MaZZAM 1T THE FROPERTY 0OF MOTOROLA SPDs INC.
COFYRIGHT 1374 EY MOTOROLA INC ~ assembler is updated with improvements.
MOTOROLA ME: ZEMELERs FELEAZE 1.1

Line number.

Program counter (hexadecimal).

Hexadecimal instruction, data, or value.
anLan FiaM
0110 A - 0<E D1.H
[} D100 - ek (* -
f B00s CouNT EOL 3 IMDICATET OCTAL MUMEER An asterisk(*) may be used as the first
TTHRT LD INZ ITACE FOINTER character of a comment statement.
Lo
LDA E
ERCE LTIR A DIFECT ADDRETSING \
CMFORA IMDEZED ADDREZIIMNG The # indicates immediate addressing.

FELATIYE ADDF ING

IMFLIED ADDFEZIING
E ACCUMULATOR OMLY ADDREZIZING
BRIk
WAIT FOP INTERFUPT
The missing line 240 was an SPC 1 assem-
G113 FOUND IR TUERTH JuMP TO TUERFOUTINE bler directive.
L] ArF ITART E“TEHDED ADDF
o COMMEMT ITATEMENT MHOTE TRUMCATION
IUERTH THE COMMEMNT FIELD
1A OFA A EYTE IET MOIT ZIGMIFICAMT EIT
011m LA FETURM FROM ZUERDUTINE

The missing line 310 was an SPC 2 assem-
bler directive.

FME ZCRATCH ARER FOR ZTACK
ZTRCK FME ITART OF ZTRCEK
EVTE FCE FOFM COMZTAMT EVTE
FLCE + INDICATED HEXADEC IMAL
The $ indicates a hexadecimal value follows.
¢ ADDF FIDE DATH FOFM COMZITANT DOUELE EYTE
DATH For CIET S FORM DATH ZTRIMG vRZCII:
EMD
YMEOL THELE
ERCE FOUMD 0113 ZUERTN 0113
ADDF ot LATRA o1 }——MGSSAM does not sort the symbol table

NOTE: For more detailed information as to specific meaning of mnemonics and the details of each program refer to the M6800
MICROPROCESSOR PROGRAMMING MANUAL.

119

LdnGUaGe OF THE

MICROPROCESSOR INSTRUCTION SET
ALPHABETIC SEQUENCE

ABA Add Accumulators

ADC Add with Carry

ADD Add

AND Logical And

ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

BCC Branch if Carry Clear

BCS Branch if Carry Set

BEQ Branch if Equal to Zero

BGE Branch if Greater or Equal Zero

BGT Branch if Greater than Zero

BHI Branch if Higher

BIT Bit Test

BLE Branch if Less or Equal

BLS Branch if Lower or Same

BLT Branch if Less than Zero

BMI Branch if Minus

BNE Branch if Not Equal to Zero

BPL Branch if Plus

BRA Branch Always

BSR Branch to Subroutine

BVC Branch if Overflow Clear

BVS Branch if Overflow Set

CBA Compare Accumulators

CcLC Clear Carry

CLI Clear Interrupt Mask

CLR Clear

CLv Clear Overflow

CMP Compare

COM Complement

CPX Compare Index Register

DAA Decimal Adjust

DEC Decrement

DES Decrement Stack Pointer

DEX Decrement Index Register

EOR Exclusive OR

INC Increment

INS Increment Stack Pointer

INX Increment Index Register

JMP Jump

JSR Jump to Subroutine

LDA Load Accumulator

LDS Load Stack Pointer

LDX Load Index Register

LSR Logical Shift Right

NEG Negate

NOP No Operation

ORA Inclusive OR Accumulator

PSH Push Data

PUL Pull Data

ROL Rotate Left

ROR Rotate Right

RTI Return from Interrupt

RTS Return from Subroutine

SBA Subtract Accumulators

SBC Subtract with Carry

SEC Set Carry

SEI Set Interrupt Mask

SEV Set Overflow

STA Store Accumulator

STS Store Stack Register

STX Store Index Register

suB Subtract

swi Software Interrupt

TAB Transfer Accumulators

TAP Transfer Accumulators to
Condition Code Reg.

TBA Transfer Accumulators

TPA Transfer Condition Code Reg.
to Accumulator

TST Test

TSX Transfer Stack Pointer to
Index Register

TXS Transfer Index Register to
Stack Pointer

WAI Wait for Interrupt

INSTRUCTION ADDRESSING
MODES AND ASSOCIATED
EXECUTION TIMES
(in microseconds assuming a 1 MHz clock)

(Dual Operand)

ACCX
Immediate
Direct
Extended
Indexed
Implied
Relative

> >
o0
o0
x x

CErBeNNNNR e s e s NNNeNUNDs o0 s elNossesossbihosbhoNeesNeRNNNG®es00ssssossscssssssssesh

DR R IR R R R R R R R N E R R R R R R R R R R R R N O N O G SO

z

O
D R R I R I T O N S N R I R I T T T T T T S S S S PP WP
S 0 0 0 0 8 0PI L ENT eI IWWNG S e SNEeseLINS s e s s e e s e e eNNNS
D R R R R I I I I R T T R S S S R R A IR N T R A
0 e 008 e RDNONEN 6 L0000 s AlNOVNAOWS DR eNeNDAeDeeessssssssssnssssssdOanss
P L ENE LI INNDE LI ENNIININNDDNDES ENNSINSDNNO NS GG SOOI NS0 eNNNNNS

LIST OF ASSEMBLER DIRECTIVES

END End of Program

EQU Equate Symbol

FCB Form Constant Byte

FCC Form Constant Characters
FDB Form Double Constant Byte
MON Return to Console

NAM Name

OPT Option

ORG Origin

PAGE Top of Form

RMB Reserve Memory Byte
SPC Space Lines

ACCX (accumulator only) Addressing

In accumulator only addressing, either accumula-
tor A or accumulator B is specified. These are one-byte
instructions.
Immediate Addressing

In immediate addressing, the operand is contained
in the second byte of the instruction. No further
addressing of memory is required..-The MPU addresses
this location when it fetches the immediate instruction
for execution. These are two/three-byte instructions.
Direct Addressing

In direct addressing, the address of the operand is
contained in the second byte of the instruction. Direct
addressing allows the user to directly address the low-
est 256 bytes in the machine; i.e., locations zero through
255. That part of the memory should be used for
temporary data storage and intermediate results. In
most configurations, it should be a random access
memory. These are two-byte instructions.
Extended Addressing

In extended addressing, the value contained in the
second byte of the instruction is used as the higher
eight-bits of the address of the operand. The third byte
of the instruction is used as the lower eight-bits of the
address of the operand. This gives one a 16-bit address
for the operand. This is an absolute address in memory.
These are three-byte instructions.
Indexed Addressing

In indexed addressing, the value contained in the
second byte of the instruction is added to the index
register lower eight-bits in the MPU. The carry is then
added to the higher order eight-bits of the index regis-
ter. This result is then used to address memory. The
modified address is held in a temporary address regis-
ter so there is no change to the iudex register. These
are two-byte instructions.
Implied Addressing

In the implied addressing mode the instruction gives
the address (i.e., stack pointer, index register, etc.).
These are one-byte instructions.
Relative Addressing

In relative addressing, the value contained in the
second byte of the instruction is added to the program
counters lowest eight-bits plus two. The carry or bor-
row is then added to the high eight-bits. This allows
the user to address data within a range of —126 to
4129 bytes of the present instruction. These are two-
byte instructions.

MOTOROLA

Semiconductor Products Inc.

5005 EAST MCDOWELL ROAD, PHOENIX, ARIZONA 85008

120

10293-3 PRINTED 1N USK 678 NPCRIAL £1T0 w1217

.3 ‘v N . -

Py Y WA R LAAED FI R YIRS ceter sy B TS coties SRS

o 5

B T e e e e S
e . . -

¢SRS M e USRS e S Iee WO HVILS LeMts. RITeu ~ertbe. SEPTSINE

Lol e e e 1 3l s P s b O e

NGRS S S SN0 S S S SN S 2

2
34
x

i

Rigate vhor WD 4 rigis

scn . MRS S EV SN M s @YY S w

e it B

UPPORT
oOFTUAME

PROGRAMMABLE LOBIE - ve cos oy

Motorola software for the M6800 microcomputer family is
currently available on United Computing’s Multiple Access

Remote Computing Service.

MPCASM — M6800 Cross Assembler symbolic
source code to machine-language with listing.

converts

MPSSIM — M6800 Interactive Simulator duplicates the exe-
cution of machine-language instructions assem-
bled with the cross assembler.

HELP - —The HELP Program provides the user of Motorola

support software with real time documentation
of the software. This documentation includes
abbreviated operating procedures.

MPBVM — Build Virtual Machine program simplifies the
file management problems associated with de-
veloping microprocessor programs.

TO ACCESS THE SOFTWARE:

1. Contact your local UCS sales representative and
request service for Motorola M6800 Software
System under user catalog M437.

2. If you are a new user also request the UCS
System Guide and the UNIEDIT (Editor) man-
uals from the UCS sales representative. You will
also need to obtain the appropriate telephone
numbers to access UCS’s time-sharing service.

3. For detailed programming and support soft-
ware information order your copy of the
“M6800 Microprocessor Programming Manual”’
Motorola Semiconductor Literature Distribution
Center, P. O. Box 20924, Phoenix, Arizona
85036.

4. Sign on with your TTY (or other terminal)
and you will be up and running.

MOTOROLA Semiconductor Products Inc.

ISSUE B

©MOTOROLA INC., 1976

121

MG300 SUPPORT SOFTWAME

The sample program displayed on this and the next three pages used the
U.C.S. Timesharing system to give the new user a capsule view of the pro-
cedure for using Motorola's M6800 Support Software.

Item n describes preparation of the sample program using the edit fea-
tures of timesharing.

Item ﬂ demonstrates how the user can: a) create a machine file, b) change
the machine file’s size, and c) alter the label to a meaningful message about the
application being developed.

Item B demonstrates the procedure for assembling in background. A
batch job is created and then submitted to background (batch).

OR

Item n shows the procedure for assembling the sample program in fore-
ground (timesharing) and the listing of the program generated by the
assembler.

Item E explains the simulator dialog and a step by step simulation of the
sample program.

Item [describes the technique to punch a paper tape of the Object Tape
File. This tape is compatible with the Motorola EXORciser.TM

BN creare a sampLe PROGRAM
g

Enter response so computer can determine your termi-

UCS ©85/01776. 11.59.38. Tid4 nal’s speed.

USER NEHBER: Me37 XXX if 10 CPS enter 761

::::'-"F‘DR' if 15 CPS enter 861

NEW, PCH if 30 CPS enter T61

«RDY-FORs UCS log-on sequence where XXX is your assigned user
AUTO number.

80188 NAM PGM Ent d

89118 OPT M=MEMF1 SPECIFY MACHINE FILENANE nter your password.

80120 OPT O=TAPEF1 OBJECT TAPE FILENANE FORTRAN system automatically assigned.

80138 OPT SYNBOL SELECT PRINTING OF SYMBOLS . .)

98148 ORG 256 Create new file with filename “PGM."”

80158 COUNT EQU 3 Ready indicates system is ready to accept data or com-
80160 STARYT LDS #STACK INZ STACK POINTER mand.

88178 LDX ADDR
80188 LDA B #COUNT IMMEDIATE ADDRESSING NOTE: The line number includes the first space following

89198 BACK LDA A 10 DIRECT ADDRESSING the number; allow for this space character while entering
88288 CMP A 2.X INDEXED ADDRESSING the program.
88218 BEQ FOUND RELATIVE ADDRESSING

\ .)
Automatic | b .
88228 DEX INPLIED ADDRESSING utomatic fine number assignmen

80238 DEC B ACCUMULATOR ONLY ADDRESSING The first record should be a NAM assembler directive; the
88248 BNE BARCK first six characters of operand will appear in the assembler
80258 WAI WAIT FOR INTERRUPT listing header.

88268 SPC 1

98270 FOUND JSR SUBRTN JUMP TO SUBRGUTINE The ORG assembler directive sets the program counter.

88280 JNP START EXTENDED ADDRESSING

98298 * COMMENT STATEMENT NOTE TRUNCATION 81234367898123436789

80308 SUBRTN TAS COMMENT FIELD TRUNCATIONB123436789 Enter the program: only one space between a line number
80318 ADDA BYTE SET MOST SIGNIFICANT BIT and a label; otherwise the assembler accepts one,or more
88320 RTS RETURN FROM SUBROUTINE spaces separating the fields.

88338 SPC 2

80349 RMB 20 SCRATCH AREA FOR STACK The END assembler directive informs the assembler this is
80358 STACK RMB 1 START OF STACK the last record of this assembly.

80368 BYTE FCB $88 FORM CONSTANT BYTE

28378 FCB $10, ¢4 $ INDICATES HEXADECIMAL The MON assembler directive informs the assembler this is
99380 ADDR FDB DATA FORM CONSTANT DOUBLE BYTE the last file to be assembled.

89398 DATA FCC /SET/ FORM DATA STRING (ASCII)

90488 END Escape key, delete key, or control-x cause exit from auto
80418 MON mode.

99420 *DELe SAV is the command to save the new file just created.
SAV . :
RDY Examples of program changes; by overwriting and by in-
318 ORAA BYTE SET MOST SIGNIFICANT BIT serting a new line.

105 » REVISION 1 RES is the command to resequence the program starting
E::Y-FOR' with line number 100 and sequencing by 10.

REP- REP is the command to replace (or update) an existing
#RDY® file.

122

I3 assemste in FoRecROuND

EXE, OLD, NPCASH(H437ses) l

*RDY-EXEe Call the cross assembler and cause it to
RUN, N=24008 ; run.

85/,03/76 1.32.14
PROGRAN MPCASN

The release number is changed as the
MOTOROLA SPD, INC. OVUNS AND IS RESPONSIBLE FOR MPCASH cross assembler is updated with improve-
COPYRIGHT 1974 BY NOTOROLA INC ments.

HOTOROLA MPU CROSS ASSEMBLER, RELEASE 1.4a
Enter S| (source input) filename of the

ENTER SI FILENAME program to be assembled.
? PGNM
FILE’S LABEL: The contents of the Label Buffer Area

SOURCE FILENANE: PGM |
AUTHOR JOHN DOE f

from the machine file MEMF1.

Line number.

1 PAGE 1 PGM 85/83/76 13.32.14 Program counter (hexadecimal).

Hexadecimal instruction, data, or value.

I NAM PGM An asterisk (*) may be used as the first
ee11e *« REVISION 1 character of a comment statement.
881280 OPT M=MENF1 SPECIFY MACHINE FILENAME
ee13e oPT O=TAPEF1 OBJECT TAPE FILENAME
801480 OPT SYNBOL SELECT PRINTING OF SYMBOLS
89138 0109 ORG 236
00160 9083 COUNT EQU 3 The # indicates immediate addressing.
80178 91080 8E 8132 START LDS iéacx' INZ STACK POINTER
80180 0103 FE 8136 LDX ADDR
80190 8186 C6 83 LDA B #COUNT IMMEDIATE ADDRESSING
00200 0108 56 0a BACK LDA A 10 DIRECT ADDRESSING
80210 018A Al 02 CHP A 2,X% INDEXED ADDRESSING
00228 018C 27 oS BEQ FOUND RELATIVE ADDRESSING
08238 810t 09 BEX INPLIED ADDRESSING
08248 010F 34 DEC B ACCUMULATOR ONLY ADDRESSING
802358 0110 26 F6 BNE BARCK
988260 0112 3E WAl WAIT FOR INTERRUPT
The missing line 270 was a SPC 1 assem-
00280 8113 BD 8119 FOUND JSR SUBRTN JUMP TO SUBROUTINE bler directive.
88298 0116 7E 8100 JNP START EXTENDED ADDRESSING
LI X 1] ¢ COMMENT STATEMENT NOTE TRUNCATION 01234367890123
80318 08119 16 SUBRTN TAB CONMENT FIELD TRUNCATION®12
89328 011A BA 08133 ORA A BYTE SET MOST SIGNIFICANT BIT
80338 811D 39 RTS RETURN FRON SUBROUTINE
The $ indicates a hexadecimal value fol-
80350 011t 0814 RNB 20 SCRATCH AREA FOR STACK lows.
80360 0132 0001 STACK RHNB 1 START OF STACK
08370 0133 88 BYTE FC8 $80 FORM CONSTANT BYTE
008380 0134 10 FCB $10, 84 ¢ INDICATES HEXADECIMAL
8135 04
90398 0136 0138 ADDR FDB BATA FORM CONSTANT DOUBLE BYTE
00400 2138 33 DATA FCC /8ET/ FORM DATA STRING CASCII)
0139 ¢S
8134 S4
804180 END
SYNBOL TABLE NOTE: For more detailed information as
to specific meaning of mnemonics and
the details of each program refer to the
ADBR 9136 BACK 8168 BYTE 8133 COUNT 0083 DATA 0138 M6800 MICROPROCESSOR PRO-
FOUND 9113 STACK ©132 START €108 SUBRTN 0119 GRAMMING MANUAL.

123

I simuLare The sampLe PROGRAM

EXE, OLD, NPSSIN(N4379ess)
*RDY-EXEe

I

RUN, H=24008

J

85/03/76. 16.25.55.
PROGRAMN NPSSIN

MOTOROLA SPD,
COPYRIGHT 1975 BY MOTOROLA INC

INC. OUNS AND I8 RESPONSIBLE FOR MPSSIN

Call the simulator and cause it to run.
Enter the MF (memory file) filename of
the memory file to be simulated.

The contents of the Label Buffer Area
from the machine file MEMF1.

Register heading:

HH input the output base hexadecimal
WOTOROLA MPU SIMULATOR, RELEASE 1.34 1A Instruction address
OC Operator mnemonic code
EA Effective operand address
ENTER NF FILENANE P Program counter
2 MENF1 X Index register
FILE’S LABEL: A Accumulator A
SOURCE FILENAME:. PGM) B Accumulator B
AUTHOR JOHN DOE C Condition code register
HH IA ocC EA 4 X A B c -] T S Stack pointer
,0;:00;0;‘ s:.:°1::.= ::la 00 80 000008 8000 8800800 T Time cycles (always decimal)
?)54, .
+0108 LDS +01082+0183 0000 00 0C 0000B0+0132 0000003 Simulator commands separated by period
*0103 LDX +0137+0106+0138 66 00 000000 0132 0000808 SMOAS54 Set memory location A to
#0105 LDA 8+0187+0108 0136 86+03 809008 8132 98680010 contain 54
+0188 LDA A+30BA«B10A 8138+54 83 800088 8132 0060813 SRP100 Set register (Program
818A CNP A®013A@18C 0138 3¢ 83 600280 @132 08600018 Counter) equal 100
+016C BEQ +618D+0113 0138 54 03 800200 8132 08000822 Toc) equal 7
#0113 JUSR #0131+0119 9138 54 03 000200+0130 0000031 Trace C instructions
*8119 TAB »*B8119+811A 8138 S4+54 000000 8130 00800833 Simulator command Display Memory; be-
;:l:: ORS ﬁ'°1g:‘0‘;’ 01:8'"; 5; 00"200 01:‘ 0":'37 ginning with location 100, display 3B
c hex) byt te the right i -
«811D RTS 013248116 8138 D4 54 88NB8E+0132 0080842 ;ien’; th;’::er(a'f vt e
+0116 JNP 811840180 0138 D4 54 00NS0G 0132 0800045 N Heral equ ot the prin
«0108 LDS +8102+8183 8138 D4 54 0800686 9132 2000048 characters; the periods show nonprintable
2 DM 109,38 characters).
2188 BE 81 32 FE 81 36 C6 83 96 8A A1 082 27 05 89 5A R
0118 26 F6 3E BD 81 19 7E 81 88 16 BA @1 33 39 80 @8 .39.
0120 08 00 00 80 60 80 06 60 08 60 86 00 @8 66 6@ 868
a12a aa ot 1€ 00 10 04 Q1 20 X2 45 54 . ess"{
;';; ;' ve v oEE R owE wE wE o¥E Simulator commands: RS restore registers;
8800 *«» 0000°'0000 2080 80 00 800080 8900 2008000 D display registers.
? EX Simulator command EX exit simulator

L3 puncu a paper Tape

OLD, TAPEF1

NOTE: Hexadecimal input to the simula-
tor requires the first character be numeric
(i.e.: to enter the hex. value “C" enter
“0C")

OLD, TAPEF1 calls the formatted tape

¢RDY-FORs
LNH

image so it may be punched and listed.

$0060080484435218

List the Object Tape File TAPEF1 with-

611301008E0132FED136C603960AR1022705093A3A
6111011026F63EBDO1197E010016BAB1333I9F0
$10B01338010048138534334807

out heading. Turn on punch device before
entering carriage return.

$9030000FC SO . . . indicates a header record
;::YO S1. .. indicates a data record
CT = HH.88 S9 ... indicates an end-of-file record

BKCPU = T.TT
16KCPU = T.TT

Sign-off system (enter goodBYE)

24KCPU = T.TT

R4I7TAKR LOG OFF. 17.30.42.

1
J

Accounting statistics for the current
session.

124

Once a machine file has been created and configured the Build
Virtual Machine program need not be run until the configuration
needs changing.

K3 creare a macume e

ERE, OLD, MPBYN(NM437ees) ?

*RDY-EXEs
RUN, N=24009

Call the Build Virtual Machine program
and cause it to run.

8S/01/76. 12.43.18.

PROGRAN MNPBVN
HOTOROLA 8PB, INC. OWNS AND 15 RESPONSIBLE FOR HPBVH
COPYRIGHT 1974 BY MOTOROLA INC

MOTOROLA MPU BUILD VIRTUAL MACHINE, RELERSE 1.44
ENTER ’HP HP B’ FOR MORE HELP

? MF MENFQ
s2ssATTN, 92

FILE’S LABEL.
DEFAULT VIRTUAL MACHINE FILE (4K OF MEMORY)

Date and Time provided by U.C.S. system.

Name of program running.

Fetch the machine file named MEMF1.

Indication that the machine file MEMF1
did not exist and that a file was created
assuming the default parameters.

? LV OIFF

? SOURCE FILENANE:

? 71
ENTER TITLE TEXT

PGH
ENTER TITLE TEXT

ENTER TITLE TEXT
?

7 AUTHOR JOHN DOE A’
2 Ho

VIRTUAL MACHINE FILE MENF1
FILE’S LABEL
SOURCE FILENANE. PGH
AUTHOR JOHN BOE
LAST WORD ADDRESS 1FF
MACRO LIBRARY LISTING
1872 RENAINING CHARACTERS

? EX

KN aSSEMBLE In BAgHGROUND

NEV, CONTROL

¢RDY-FORe
AUTO
00100 JOB. I

90110 ACCOUNT, N¢37KXX. |
00120 GET.HPCASN(N437ees)

908130 RFL.70000.
00140 MPCASN.
891350 GOEXIT.
80160 EXIT.

——

98178 SAVE, OUTPUT=OUTFILE
90188 DFD,DAYFIL.

80198 SAVE, DAYFIL. |
00200 EOR.
88216 PGH

80220 EOF.
90238 *DBELs

SAVE

sRDYs
RJE

RJE CONPLETE, ID = RJEJJJIJ

*RDYs

The contents of the default Label Buffer
Area.

Change this machine file’s size by setting
a new Last Word address (hexadecimal
value 1FF was entered).

Set new information into the Label Buf-
fer Area for this machine file (MEMF1).

Display the Machine File Organization.

EX is the command to exit the Build
Virtual Machine program.

Create new file with filename ‘‘CON-
TROL.”

Automatic line number assignment.

Job and account card for batch job
“CONTROL.” XXX is your assigned
user number.

Get the cross assembler program and
cause it to run.

Direct assembler listings to a ““new"’ file
called “OUTFILE" and SAVE it.

File DAYFIL contains the system oper-
ating messages associated with job pro-
cessing.

Name of M6800 assembly language
source file.

Escape key, delete key, or control-x
must be hit to escape auto mode.

Save file “CONTROL."”

Submit batch job,"CONTROL" to back-
ground.

/
System response to RJE command—JJJJ
is the job-id assigned to this job.

-

125

LanGUdGe OF THE

MICROPROCESSOR INSTRUCTION SET
ALPHABETIC SEQUENCE

ABA Add Accumulators

ADC Add with Carry

ADD Add

AND Logical And

ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

BCC Branch if Carry Clear

BCS Branch if Carry Set

BEQ Branch it Equal to Zero

BGE Branch if Greater or Equal Zero

BGT Branch if Greater than Zero

BHI Branch if Higher

BIT Bit Test

BLE Branch if Less or Equal

BLS Branch if Lower or Same

BLT Branch if Less than Zero

BM! Branch if Minus

BNE Branch if Not Equal to Zero

BPL Branch if Plus

BRA Branch Always

BSR Branch to Subroutine

BVC Branch if Overflow Clear

BVS Branch if Overflow Set

CBA Compare Accumulators

CLC Clear Carry

CLlt Clear Interrupt Mask

CLR Clear

CcLv Clear Overflow

CMP Compare

COM Complement

CPX Compare Index Register

DAA Decimal Adjust

DEC Decrement

DES Decrement Stack Pointer

DEX Decrement Index Register

EOR Exclusive OR

INC Increment

INS Increment Stack Pointer

INX Increment Index Register

JMP Jump

JSR Jump to Subroutin€

LDA Load Accumulator

LDS Load Stack Pointer

LDX Load Index Register

LSR Logical Shift Right

NEG Negate

NOP No Operation

ORA Inclusive OR Accumulator

PSH Push Data

PUL Pull Data

ROL Rotate Left

ROR Rotate Right

RTI Return from Interrupt

RTS Return from Subroutine

SBA Subtract Accumulators

SBC Subtract with Carry

SEC Set Carry

SEI Set Interrupt Mask

SEV Set Overflow

STA Store Accumulator

STS Store Stack Register

STX Store Index Register

suB Subtract

swi Software Interrupt

TAB Transfer Accumulators

TAP Transfer Accumulators to
Condition Code Reg.

TBA Transfer Accumulators

TPA Transfer Condition Code Reg.
to Accumulator

18T Test

TSX Transfer Stack Pointer to
Index Register

TXS Transfer Index Register to
Stack Pointer

WAI Wait for Interrupt

INSTRUCTION ADDRESSING
MODES AND ASSOCIATED
EXECUTION TIMES
(in microseconds assuming a 1 MHz clock)

(Dual Operand)
ACCX
Immediate
Direct
Extended
Indexed
Implied
Relative

ABA
ADC
ADD
AND x
ASL
ASR
BCC
BCS
BEQ
BGE
BGT
BHI
BIT X
BLE
BLS
BLT
BMI
BNE
BPL
BRA
BSR
BVC
BVS
CBA
cLe
cLt
CLR
cLv
CMP X
CcoM
CPX
DAA
DEC
DES
DEX
EOR x
INC
INS
INX
JMP
JSR
LDA x
LDS
LDX
LSR
NEG
NOP
ORA x
PSH
PUL
ROL
ROR

x x

RTS
SBA

SEC
SEl

STA x
S§TS
STX
SUB x
Swi

BB eENNNONR e e s sNRNNeNUIDs s s s s eessssebioehbholNessNeNNNGO® e es s 0000t sossssesen

TAP
TBA
TPA
TST
TSX
TXS
WAI

© 6 6 8 8 0 8 8 0 0 6 0 4 0 5 S 0 8 P S S 0 S L s e e e s e 8 S s 00 e e e e ALDNEADRANS RARALNLGS SO0 0

© c e 00000 RDNNEEELEEe0DssalOONUNAOWSIOALseDeUNONSDoe geseossessssencessessdManne
P e NI NUNDS S I N NNI I NS NNDDNDE S e NN e NSEONNS NS e e e 00N NN,

6 6 8 e e 8IS eI e N WWNE S S s IR e e 88 LINS e S e e e e e e e eess e OO
D R N R O L A I A I A S T I I N S R R R R R

D I I I B R R N O N N R I I I R O R R R R R R T

LIST OF ASSEMBLER DIRECTIVES

END End of Program

EQU Equate Symbol

FCB Form Constant Byte

FCC Form Constant Characters
FDB Form Double Constant Byte
MON Return to Console

NAM Name

OPT Option

ORG Origin

PAGE Top of Form

RMB Reserve Memory Byte
SPC Space Lines

ACCX (accumulator only) Addressing

In accumulator only addressing. either accumula-
tor A or accumulator B is specified. These are one-byte
instructions.
Immediate Addressing

In immediate addressing, the operand is contained
in the second byte of the instruction. No further
addressing of memory is required. The MPU ‘addresses
this location when it fetches the immediate instruction
for execution. These are two/three-byte instructions.
Direct Addressing

In direct addressing, the address of the operand is
contained in the second byte of the instruction. Direct
addressing allows the user to directly address the low-
est 256 bytes in the machine; i.e., locations zero through
255. That part of the memory should be used for
temporary data storage and intermediate results. In
most configurations, it should be a random access
memory. These are two-byte instructions.
Extended Addressing

In extended addressing, the value contained in the
second byte of the instruction is used as the higher
eight-bits of the address of the operand. The third byte
of the instruction is used as the lower eight-bits of the
address of the operand. This gives one a 16-bit address
for the operand. This is an absolute address in memory.
These are three-byte instructions.
Indexed Addressing

In indexed addressing, the value contained in the
second byte of the_ instruction is added to the index
register lower eight-bits in the MPU. The carry is theén
added to the higher order eight-bits of the index regis-
ter. This result is then used to address memory. The
modified address is held in a temporary address regis-
ter so there is no change to the index register. These
are two-byte instructions.
Implied Addressing

In the implied addressing mode the instruction gives
the address (i.e., stack pointer, index register, etc.).
These are one-byte instructions.
Relative Addressing

In relative addressing, the value contained in the
second byte of the instruction is added to the program
counters lowest eight-bits plus two. The carry or bor-
row is then added to the high eight-bits. This allows
the user to address data within a range of —126 to
+129 bytes of the present instruction. These are two-
byte instructions.

MOTOROLA

Semiconductor Products Inc.

8005 EAST MCDOWELL ROAD, PHOENIX, ARIZONA 85008

126

9906-3 FRINTED 1% USA 777 ICRIAL LITWD BaS53

P I LA T ar am s e .. om cwa
Wy o+ U A5 G AAES cAORD GV ISNIRE CPIMes BN TS voRtty BRSNS
o ase »
O AP | W 05 i 5 s S ol 5T Wy 5 gl 8 W, W B ot
e o g v — . T L 21— 45 G S 1 7]
-

a swc B sy
VU, (¢ 2RSSR ee AL - ST SIS setatse S v SRS
ons oo

. < s 237 ol e

e e e st 50 et MPL COMPILER v

VO LA S Ps I 17 T v 10— T P g . s g Sn . - g
v o

T g TISTEPESSEEY
. e e as vw
: ey

DR ¢ b s P vat RT3 v
o e = o < o]
-

s

A s M 38 A 2 Pl 898 s b Sl 50 il 0 PUOAn 54 el 2 e
LS S S S S S S S S 3
TS R SOBEIS SN P T A

S B B B
I] [

ESUPS J U G S S U G

£ 3 avee s WA g

i s M-
PP

e

P
. -

aUPPORT
SOFTUWAE

Pllﬂﬁﬂﬂlmllﬂﬂll! lllﬁlﬂ — the easy way

Motorola’s MPL Compiler for the M6800 microcomputer
family is currently available on United Computing’s Multiple
Access Remote Computing Service.

TO ACCESS THE SOFTWARE:

1. Contact your local UCS sales representative and
request service for Motorola M6800 Software
System under user catalog M437.

2. If you are a new user also request the UCS
System Guide and the UNIEDIT (Editor) man-
uals from the UCS sales representative. You
will also need to obtain the appropriate tele-
phone numbers to access UCS's time-sharing
service.

3. For detailed programming and support software
information order your copy of the ““MPL
Language Reference Manual’” from Motorola
Semiconductor Literature Distribution Center,
P.O. Box 20924, Phoenix, Arizona 85036.

4. Sign on with your teletype (or other terminal)
and you will be up and running.

127

ISSUE A
©MOTOROLA INC., 1976

MG800 SUPPORT SOFTWAre

The sample program displayed on this and the following pages
used the UCS Timesharing system to give the new user a capsule
view of the procedure for using Motorola’s MPL Compiler.

Item n describes preparation for the sample program using
the edit features of timesharing.

Item ﬂ shows the conversation to compile the sample pro-
gram in timeshare mode.

Item shows the conversation to assemble the output
from the compilation, and a partial listing of the program gener-
ated by the assembler.

Item n describes the preparation of a control file for exe-
cuting “M68MPL"" in remote job entry (RJE) mode.

N creare a sameLe PROGRAM

Enter response so computer can determine
your terminal’s speed.

if 10 CPS enter 761

if 15 CPS enter 861

*sRLY-FOR e if 30 CPS enter T61
Hgmv.‘MF'LI;H UCS log-on sequence where XXX is your
=Ly -FORe assigned user number.

¥ OFT MF=MFTEIT.NOF Enter your password.
il
TAMPLE MFL FROGRAM

FORTRAN system automatically assigned.
. Create new file with filename “MPLTST1.”

Ready indicates system is ready to accept
data or command.

[S N . NOTE: The line number includes the first

CEDURE OFTIONZ (MAIM: space following the number; allow for this
I=1E _ - space character while entering the program.
ALL IORT AMD ZEMD ADDRETT AMD ZIZE OF ARRAY BB WITH CALL. e~
ZORT <sAZIZs "BE"+3 ic line n "
MELE OF IN-LIME COLE Automatic line number assignment.
¥
3 TIZ
L ZORT AMD ZEMD ADDREST AMD TIZE OF ARRPAY “CT° WMITH CALL. e~
CALL ZORT yAZIZ. 0708

+ ITOF PROGFAM UTION WITH ERAMCH TO ZELF -

ITOF: 30 TO ZTOFS

=MD
* IUBROUTINE ZORT -

IO0RT: FROCEDURE <s MM RESETPS .

DL AR Z+ BAIED.PTR E(Zrs PTRE B

DEL 1 ErZhs SWITCHs TEMP B

Dol MM

FTRZ=REZETP+NN}
It TWITOH

DD 1 = REZETF TO FTRE BV 23
FTR

PES) 50 TO ©31s %3
o450 FETURN
I 0

nog

MOTHIMG WILL BE LIZTED WHEM AZIEMELED
AFTER THIZ ZTATEMENT .-

+ OFT NOL
END Escape key will exit from auto mode.
SDEL®

SAV is the command to save the new file
just created.

128

3 compiLe THe SameLe pROGRAM

EXEs OLDs MESMPL (M4 2T o0e) 1

+RDY-EXE® Call the Compiler and initiate execution.
RUMsM=24000 ‘

051475, 15.51.02.
PROGRAM MSIMPL

MOTOROLA ZFDs IMC. OWHE AND IS RESFONZIBLE FOR MA!
COPYRIGHT 1375 AMD 1375 BY MOTOROLA INC.

[y

Y
2
T
~

MOTOROLA“Z Ma200 MPL COMPILERs RELERZE 1.2 ——————— The release number is changed as the Com-

piler is updated with improvements.

ENTER =I FILENAME

T MPLT=T1 Enter S| (Source Input) filename of pro-

ENTER OT FILENAME gram to be compiled.

T MPLOT Enter OT (Output) filename. Compiler out-
+RDY-EXE®

put will automatically be saved.

X assemete e SampLe PROGRAM

EXE;BLDyHPDHSM(MéB?OOO}}
*RDY-EXE® Call the Cross Assembler and initiate
RUN»M=24000 f execution.

05-14-75. 15.53.43.
PROGRAM MPCRZIM

1-_—

MOTOROLA TPDs IMC. OWNS AND I3 RESPONTSIBLE FOR MPLCARIM
COPYRIGHT 1974 BY MOTOROLA INC

MOTOROLA MPL CROSS ASZEMBLERs RELEASE 1.4R ——— The release number is changed as the Cross
Assembler is updated with improvements.
ENTER =1 FILENAME

T MPLOT Enter filename of the program to be assem-
FILE“Z LRBEL: bled. This filename is the output from the
DEFAULT YIRTUAL MACHINE .FILE <4k OF MEMORY> compilation in ltem 2 above.

1 FRSE 1 HMPLOT 0S5-14-75 15:54,.02
onooy MAM MPLOT
onooz s COMFILED WITH MPL YERZIOM 1.2
onaoz oFT MF=MFTE=T, NOP
nonng 00110 <o
oonns »00120 TAMPLE MFL PROGRAM
00005 +00130 *

129

X compiLaion i Rde mone

HEW COMTROL

Create JCL file with filename “CONTROL.”

READY - FOR?
AUTO

o100 J0E.
00110
an1za
ooLsn
ani4an
no1sn
DY)
[Ry sOUTPUT=0UTFILE.
00120 DFDsDAYFIL.

00130 ZAYEs DAYFIL .

Automatic line number assignment.

Escape key will exit from auto mode.

Save file just created.

Submit file to the batch input queue.

EOR.
=OURCE
EOF.
*DEL+
RJE
RJE COMFLETEsID = RJEZAYN
*RDY®
sooee NOTEZ seeee
LIME HO. COMMENT =
00110 Mg THOULD BE REPLACED WITH
WOUR F MUMEER
00170 "OUTFILE™ I3 THE FILEMAME YOU WANT
TO CONTAIN YOUR OUTFUT
o130 "DAYFIL" I3 THE FILEMNAME “OU WANMT
on132a TO COMTARIN vOUR RUM STATE
=S W] "TOURCE" 13 THE TOURCE INMPUT FILENAME
w220 EZCAFE KEYs DELETE kEY, OR CONTROL 5 MUZT

EE HIT TO EZCAFE AUTO MODE

130

LaNGUdGE OF THE
MG800 MPL COMPILER

ARITHMETIC ASSIGNMENT STATEMENT

General Form

a=b
Type Type of a Forms_in square brackets are optional. The following
of abbreviations are allowed:
b BIN DEC CHAR DCL — DECLARE CHAR — CHARACTER
BIN Assign. Convert to Convert to numeric
numeric ASCII with zero BIN — BINARY DEF — .DEFINED
ASCll and | suppression and DEC — DECIMAL INIT — INITIAL
assign. assign, right justified,
blanked filled on left. PE T
DEC Convert to Assign. Zero suppress and LOGICAL OPERATORS
binary and assign. IAND - IEOR - IOR—AND — OR—-EQ - GT —GE —
assign. LT — LE — NE
CHAR Not Not Assign.
allowed. allowed. a>b Left justify,
blank fill a. | ORIGIN
b>a Truncate b ORIGIN “HEX CONSTANT"”
on the right
and assign. POINTER

VARIABLE:POINTER or POINTER —> VARIABLE
CONTROL STATEMENTS

DO i = mq TO my [BY m3] PROCEDURE
DO WHILE Boolean expression PROCEDURE OPTIONS (MAIN)
DO i=mq TO my [BY m3] WHILE Boolean expression PROCEDURE OPTIONS (MAIN, STACK NAME)
GO TO label {unconditional) SHIFT
GO TO label (label assigned in DECLARE) W SHIFT k
. +k left shift
GO TO (x, xq9, . - ., xp), i or —k right shift
GO TO labelname (i)
IF a THEN sq [ELSE s] SUBROUTINES
CALL LABEL or CALL LABEL (arg1,..., arg n)
DATA REPRESENTATION LABEL: PROCEDURE or LABEL: PROCEDURE
BIT (i) — BINARY (1) — BINARY (2) — DECIMAL (arg 1, . . ., arg n)

(m, n) — SIGNED DECIMAL (m, n) — CHARACTER or

(m)
CALL LABEL <aq, ajp, a3>
DECLARE LABEL: PROCEDURE <ay, ajp, ag>
The general form is:

DECLARE

[BIT 7

BINARY

DECIMAL
[level #] name | SIGNED (m) [DEFINED
[(occurrence)] | pECIMAL (m,n)| name]

CHARACTER

| LABEL]

[BASED] [INITIAL (value 1, value 2 ...)]

131

MOTOROLA

Semiconductor Products Inc.

5005 EAST McDOWELL ROAD, PHOENIX, ARIZONA 85008

10616-1 PRINIED TN USA 577 IPERIAL LITW 866251

132

- e L o m -
"“N S Ay mmmmﬂ.m
p—nr
- e+ « A 498 e 2 Bt 55 B 15 B S8 B 1 vt 8 . o e
B e MRt P et Ty s g i e o M e Sy 55 Y 1o Sy v -
-ener -

LN an, TYSNSEE mwmﬁmmmm

S . . ew
m’*,.‘ mmmmmm
onrowes
[A il 14 el 220 e 8l 2 W 479 sl 5. B . < . 2 W

M PROGRAMMABLE LOGIB - /e cosy vy

Motorola software for the M6800 microcomputer family is
currently available for the EXORciser, Motorola’s micro-
computer system development tool:

RESIDENT EDITOR

The M6800 Resident Editor gives the user an easy means to
‘create and modify source files for input to the Assembler.
The interactive Resident Editor offers character, line, and
character string commands.

RESIDENT ASSEMBLER

The M6800 Resident Assembler converts symbolic source
code to M6800 machine-language with formatted listing. The
Resident Assembler is compatible with Cross Assemblers
provided by Motorola.

?
n
"

EXbug

The M6800 EXbug firmware provides the utility programs to
load and debug programs for the Motorola MC6800 Micro-
processur. EXbug includes many of the features found in
the M6800 Interactive Simulator available for larger computers.

For detailed programming and support software information
order your copy of the “M&800 Microprocessor Programming
Manual” and the ‘“M6800 EXORciser Resident Software
Supplement” to the ‘“M6800 EXORciser User’s Guide.”

44

Motorola Semiconductor Literature Distribution Center,
P. O. Box 20924, Phoenix, Arizona 85036.

SYSTEM REQUIREMENTS
® EXORciser
® 8k bytes of RAM
® Terminal with RS-232or TTY (20mA neutral loop current)
interface and automatic reader/punch control

B¢ Capatwator W WIIED: §-r

oo 1t S N WD AN o S e 90 40

»

PROGRAMS AVAILABLE ON:
® Paper tape
® Cassette
® GE Timesharing File
(no charge for access)

MOTOROLA Semiconductor Products Inc.

-

.

L R)
N
- -
s @t .-
e

T TRT TR
- .

EXORciser and EXbug are trademarks of Motorola Inc.

133

MGS00 SUPPORT SOFTILEME

The sample program shown here ‘was developed on the
EXORciser to give the new user a capsule view of the pro-
cedure for using the resident support software.

Item [l describes the preparation of the sample program
using the resident text editor.

Item A shows the procedure to load the resident assem-
bler, the conversation to assemble the sample program, and
the listing of the program generated by the assembler.

Item [E] explains the format of the Object Tape generated
by the assembler and the loading of the Object Tape into an
EXORciser.

Item n demonstrates how the user can test the sample
program with the trace feature of the EXbug firmware.

N creare a sampee PROGRAM

Use the EXbug Loader to load the Editor program

S—Load only asingle file

Contents of header record are printed

Call the editor and cause it to run (NNNN is the
beginning address of the editor program)

@indicates editor ready for input
B ESCAPE ESCAPE (Escape key echos as $) Positions
YELE workspace character pointer to beginning of workspace
3 MAM FIGM buffer
« REVIZION 1

0T O QuUTPUT OQBIECT THFE

| sets editor to input mode

NeT = TELECT FRIMTING OF TWwMEOLS The first record should be a NAM assembler directive;
D‘C‘G s -) - - - the first six characters of operand will appear in the
HT S0 3 IMDICATES OCTAL assembler listing header.
T IMZ STACE FOIMTER The ORG assembler directive sets the program counter.

ADLE

B #COUMT IMMEDIATE ADDRE
LR 5 10 DIRECT RIDD
* H Za¥ INDEXED
FOumMD
IMFLIED ADDREZZING
- B SCCUMULATOR OMLY ADIRE
EME ERCE

= WAIT FOR IMTERRUFT

R S |
FOUND J=R ZUEBRTH AUMF TO SURROUTIME
IMF ZTART EXTENLDED ADDREZEING
COMMEMT EZTHTEMENT
ZUERTM TYE COMMENT FIELD IMCATIOMNO
O%A A EBYTE ZET ZIGHIFICANT EIT
SETURM FROM SUEROUTIME®

ZTRRET OF

FORM CONITAMT EYTE

EL10eF4

+ IMDICATEE HEXADECIMAL
ADDRE FDOE DATAH FORM C0ONH AMT DOUELE EYTE The END assembler directive informs the assembler this
DETH FCC “ZETS FORM CONMETAMT DATA STRING : is the last record of this assembly.
EHD The MON assembler directive informs.the assembler this
HMOH is the last file to be assembled.
f’ iy N ESCAPE ESCAPE (Escape key echos as $) terminate
FEETE

input mode

B—Set pointer to beginning of workspace
E—Punch contents of workspace and exit editor program

134

I3 assemste THe SamPLe PROGRAM

“EUS 1.1 LOAD

LOAD the Resident Assembler

T5L-CONT =

HDR

EXEUG 1.1 MRID
SHMNME S

Call the resident assembler and cause it to
run.

The reiease number is changed as the resi-
dent assembler is updated with improve-
ments.

Start pass one

Start pass two

ol FizM
Line number (assigned by Assembler)
Program counter (hexadecimal).
HAM Fi3M Hexadecimal instruction, data, or value.
* FEYIZION 1 o)
OFT o OUTFUT OEJECT THRFE An asterisk (*) may be used as the first
- TELECT FRIMTIMG OF ZvMEOLZ character of a comment statement.
100
3 IMDICATEZ OCTAL

INZ =T FOIMTEF

INHEDIRTE RODR The # indicates immediate addressing.

DIFECT ADDRE

() 1 IMDEXED ADDF
GLon EF FELATIYE ADDRE
H10E 03 IMFLIED ADDRE
N10F UMULATOR OMLY ADDF

WRIT FOR INTERRUFT

The missing line 17 was a SPC 1 assembler

G112 FOUMD JZR JUMF TO ZLEROUTINE directive.
Lo AMP RF EXTEMDED ADDF Nz
¢ COMMENT ZTHTEMENT NOTE TRUMCATION 0123458723012
ZUERTH TAE COMMENMT FIELD TRUMCATIOMOI
OrA A EYTE TET MOEZT ZIGHIFICANT EIT
FTEZ FETURM FROM ZUEROUTINE
wn1d FME an HTCH AFEA FOF ZTACK

Wiy STACE EME 1 ITART OF ZTACK
EYTE FCE 20 FORM COMITAMT EYTE
FCE ‘i-ull.-'{v-“ ¥ IMDICHTEZ HEXADECIMAL

The $ indicates a hexadecimal value follows.

RIDF FLE DRTH FORM MEZTAMT DOUELE EYTE
LATH FCC ' T FGEM AMT DATA ZTRIMG CRIZCI
(eS| END
Coun
LTRRET
ERCE
FOuMD
ZURFTH
'T i NOTE: For more detailed information
S[',;E as to specific meaning of mnemonics and
IHTH the details of each program refer to the
M6800 MICROPROCESSOR PROGRAM-
TOTAL ERRORE 00000 MING MANUAL.

135

EX vL0an a paper Tave

The Object Tape generated by the resident assembler is in the following format:

. indicates a header record

. indicates a data record

. indicates an end-of-file record

E€XEUG 1.1 LOAD

GLOCONT 2 LOAD the sample program

FTIF

EXEWE 1.1 FRHT

FEG ADDFE O (L W] X))

END RODF G 136 The printed dump feature of EXbug is used to list the
EsED hexadecimal data loaded

E 1
[
w0 20

160 ud 0

0

s

EER PLLF ninn

X causes control to return to EXbug

KX 1est THe sampLe PROGRAM

EsFIN: 1.1 MAID Call the MAID (Motorola Active Interface Debug)
SORS0E S99 feature of EXbug
*iF] Change memory location A to contain 54

A-00 E=00 C-00 S-FFEA
E Display Registers

Set program counter to 0100

Convert 12 Decimal to hexadecimal

H—1 v)
B=n00 Trace C instructions

H—= Register heading:

H=59 P Program counter

H=5q X Index register

o A Accumulator A

A-54

F—t, B Accumulator B

H'_;q c Condition code register

o S Stack pointer

H-Tid

F-Tid When tracing, the contents of the MC6800 Micropro-
-0 cessor registers are printed after each instruction is
A-114 executed

136

HELPFUL HINTS

The assembly directive “OPT"’ follows the short form as
described in the M6800 Programming Manual. If the
long form is used only the short form is syntactically
checked; however, the long form is scanned until a space
or comma is found. The OPT operands DB8 and DB10
are ignored.

When used with the Texas Instruments Silent 700
terminal equipped with dual cassettes, 1200 Baud, and
Remote Device Control, the resident assembler has
throughput 12 times faster than a teletypewriter.

ter

The resident assembler is a two-pass assembler; however,
the assembler provides options as to how these passes
may be run.

1P — Normal pass one (clear symbol table and start
pass one)

1S — Start pass one, do not clear symbol table before
starting

2P — Normal pass two

2L — Start pass two, list only (allows use of TTY's
without punch control)

2T — Start pass two, punch tape only (allows use of
TTY's without punch control)

Pass two of the assembler may be used without pass one;
but forward references will be undefined, and the user
must patch these forward references before using the
Object Tape generated. This is a useful featureifa TTY
is used for assemblies and the program contains few for-
ward references, i.e., a savings of one-half of assembly
time.

RESIDENT EDITOR COMMAND SUMMARY

A — Appends an input string from the reader device to the
workspace. Ignores nulls and rubouts. Terminates on
EOF character (1A Hex), workspace full, or after 50

lines.
B — Positions the workspace character pointer to the be-
ginning of the workspace buffer.

Cstring1$string2 — Searches for stringl in the workspace buf-
fer, and, if found, replaces (Changes) stringl with
string2. String2 need not be the same length as string1.

Deletes from 1 to 254 characters from the workspace
buffer (n may be pos. or neg.). The characters are de-
leted from the present position of the workspace
character pointer.

Ends the edit operation by transferring the entire con-
tents of the workspace buffer to the punch device,
and by then copying that which is left in the reader
device to the punch de until an EOF is encoun-
tered. Terminates by punching an EOF, blank trailer
tape, and then re-starting the Editor.

F — Outputs 6 inches of blank leader/trailer code to the
punch device.

Inserts string into the workspace buffer at the present
position of the workspace character pointer. The con-
tents of the workspace buffer are repositioned, if nec-
essary, to accommodate the string.

Istring —

Kills from 1 to 254 lines (up to and including CR)
from the workspace buffer (n may be pos. or neg.).
The lines are deleted from the present position of the
workspace character pointer.

nK -

nL Position the workspace character pointer n lines from
its present position in the workspace buffer (n may be
pos. or neg.). If n equals O, the workspace character
pointer is positioned to the beginning of the line in
which the workspace character pointer presently re-

sides.

Position the workspace character pointer n charac-
ters from its present position in the workspace buffer
(n may be pos. or neg.). If n equals 0, no repositioning
occurs.

nP Punches from 1 to 254 lines from the beginning of
the workspace buffer. Output is to the punch device.

Lines output are deleted from the workspace.

Searches for string in the workspace buffer. Positions
workspace character pointer after found string.

Sstring —

nT — Prints (Types} from 1 to 254 lines from the work-
space buffer (n may be pos. or neg.). Printing begins
from the present position of the workspace charac-
ter pointer.

z — Positions the workspace character pointer to the end

of the contents of the workspace buffer.

EXORciser COMMAND SUMMARY

EXbug ROUTINES

LOAD - Loader

VERF — Verify

PNCH — Punch

PRNT — Print

SRCH — Search

MAID — Motorola active interface debug routine
S$10. — Set speed 10 cps

S30. — Set speed 30 ¢cps

S120 — Set speed 120 cps

MAID COMMANDS

n/ Open byte addressed by n

(LF) Open next sequential location
(CR) Close open location

(UA) Open previous sequential location

X Return to EXbug scan loop

nV Set breakpoint at location n

U Remove all breakpoints

n;U Remove breakpoint at location n

nW Search for n bit pattern

Kel Execute target program from restart vector

n;,G Execute target program from location n

P Continue executing from encountered breakpoint
n;P Continue executing until breakpoint found n times
n;0 Calculate offset from current location to n

N Trace one instruction

N Trace one instruction

n;N Trace n instructions

$v Display breakpoints

$M Display search mask and limits

$R Display/change target program registers
$T Set trace mode and set trace to address
$S Set stop on address compare

T Reset trace Mode

;S Reset stop on address compare

#n= Convert decimal to hexadecimal

#$n= Convert hexadecimal to decimal

#@n= Convert octal to hexadecimal

137

LanGudaGe OF THe

MICROPROCESSOR INSTRUCTION SET

ABA
ADC
ADD
AND
ASL
ASR
BCC
BCS
BEQ
BGE
BGT
BHI
BIT
BLE
BLS
BLT
BMI
BNE
BPL
BRA
BSR
BVC
BVS
CBA
cLe
cLl
CLR
cLv
CMP
COM
CcPX
DAA
DEC
DES
DEX
EOR
INC
INS
INX
JMP
JSR
LDA
LDS
LDX
LSR
NEG
NOP
ORA
PSH
PUL
ROL
ROR
RTI
RTS
SBA
SBC
SEC
SEl
SEV
STA
STS
STX
suB
Swi
TAB
TAP

TBA
TPA

TST
TSX

TXS

WAI

ALPHABETIC SEQUENCE

Add Accumulators

Add with Carry

Add

Logical And

Arithmetic Shift Left
Arithmetic Shift Right
Branch if Carry Clear
Branch if Carry Set
Branch if Equal to Zero
Branch if Greater or Equal Zero
Branch if Greater than Zero
Branch if Higher

Bit Test

Branch if Less or Equal
Branch if Lower or Same
Branch if Less than Zero
Branch if Minus

Branch if Not Equal to Zero
Branch it Plus

Branch Always

Branch to Subroutine
Branch if Overflow Clear
Branch if Overflow Set
Compare Accumulators
Clear Carry

Clear Interrupt Mask
Clear

Clear Overflow

Compare

Complement

Compare Index Register
Decimal Adjust
Decrement

Decrement Stack Pointer
Decrement Index Register
Exclusive OR

Increment

Increment Stack Pointer
Increment Index Register
Jump

Jump to Subroutine
Load Accumulator

Load Stack Pointer

Load Index Register
Logical Shift Right

Negate

No Operation

Inclusive OR Accumulator
Push Data

Pull Data

Rotate Left

Rotate Right

Return from Interrupt
Return from Subroutine
Subtract Accumulators
Subtract with Carry

Set Carry

Set Interrupt Mask

Set Overflow

Store Accumulator

Store Stack Register
Store Index Register
Subtract

Software Interrupt
Transfer Accumulators
Transfer Accumulators to
Condition Code Reg.
Transfer Accumulators
Transfer Condition Code Reg.
to Accumulator

Test

Transfer Stack Pointer to
Index Register

Transfer Index Register to
Stack Pointer

Wait for Interrupt

INSTRUCTION ADDRESSING
MODES AND ASSOCIATED
EXECUTION TIMES
(in microseconds assuming a 1 MHz clock)

(Dual Operand)
ACCX
Immediate
Direct
Extended
Indexed
Implied
Relative

ABA

>>>
zoo
[SESXe}
x x x

s e e e e e nhe e BheNeseNeNNN S s0s0eesesoecssssssssss ol

.
.

CErBeNNNND e e s s NNNaNNSs s 00 8N

S Y N T I T R I I I T R R P O A A AN S Y
006088008 enRDOUNSE8eALLeDDssnedPNNROWS eDOhesNeNONeDessessssssssssnssssssdODAnAmS
e e e NS e e s e MNUNDS SO NG NNSENENUNDD DA S NGNS e NSNS NSO S s et Ne e s NNNNGLS
e 6 6 6 6 6 8 6 0 8 s 0 s S s e a6 s e s e e e e e e e e s et e s eseeee e AEOELANRANSAARARLGS 0000

z

o
o e e e s e 8 e e s s s e e e 88 e e ANS BN e s e s e e e IS e S SN E 88 s e s e s e e e e a8t e s e
e s 0 0 8 8 0 0 e WUNUIE 88 808 s 8 o e 818 e e ANIIe e e s SO0 s s 8 NS00 S e 6 8 s s s e s e e eI e 00 e eWWWE

LIST OF ASSEMBLER DIRECTIVES

END End of Program

EQU Equate Symbol

FCB Form Constant Byte

FCC Form Constant Characters
FDB Form Double Constant Byte
MON Return to Console

NAM Name

OPT Option

ORG Origin

PAGE Top of Form

RMB Reserve Memory Byte
SPC Space Lines

ACCX (accumulator only) Addressing

In accumulator only addressing, either accumula-
tor A or accumulator B is specified. These are one-byte
instructions.
Immediate Addressing

In immediate addressing, the operand is contained
in the second byte of the instruction. No further
addressing of memory is required. The MPU addresses
this location when it fetches the immediate instruction
for execution. These are two/three-byte instructions.
Direct Addressing

In direct addressing, the address of the operand is
contained in the second byte of the instruction. Direct
addressing allows the user to directly address the low-
est 256 bytes in the machine; i.e., locations zero through
255. That part of the memory should be used for
temporary data storage and intermediate results. In
most configurations. it should be a random access
memory. These are two-byte instructions.
Extended Addressing

In extended addressing, the value contained in the
second byte of the instruction is used as the higher
eight-bits of the address of the operand. The third byte
of the instruction is used as the lower eight-bits of the
address of the operand. This gives one a 16-bit address
for the operand. This is an absolute address in memory.
These are three-byte instructions.
Indexed Addressing

In indexed addressing, the value contained in the
second byte of the instruction is added to the index
register lower eight-bits in the MPU. The carry is then
added to the higher order eight-bits of the index regis-
ter. This result is then used to address memory. The
modified address is held in a temporary address regis-
ter so there is no change to the index register. These
are two-byte instructions.
Implied Addressing

In the implied addressing mode the instruction gives
the address (i.e., stack pointer, index register, etc.).
These are one-byte instructions.
Relative Addressing

In*relative addressing, the value contained in the
second byte of the instruction is added to the program
counters lowest eight-bits plus two. The carry or bor-
row is then added to the high eight-bits. This allows
the user to address data within a range of —126 to
+129 bytes of the present instruction. These are two-
byte instructions.

MOTOROLA

Semiconductor Products Inc.

800S EAST MCDOWELL ROAD, PHOENIX, ARIZONA 85008

138

5935 PRINIED N USK .78 IPTRIAL LT 832114

Instruction Set

Instruction Set INST—1

EXECUTABLE INSTRUCTIONS — ALPHABETIC LIST

ABA ADD ACCUMULATORS INS INCREMENT STACK POINTER
ADC ADD WITH CARRY INX INCREMENT INDEX REGISTER
ADD ADD

AND LOGICAL AND JMmpP JUMP

ASL ARITHMETIC SHIFT LEFT JSR JUMP TO SUBROUTINE

ASR ARITHMETIC SHIFT RIGHT
LDA LOAD ACCUMULATOR

BCC BRANCH IF CARRY CLEAR LDS LOAD STACK POINTER

BCS BRANCH IS CARRY SET LDX LOAD INDEX REGISTER

BEQ BRANCH IF EQUAL TO ZERO LSR LOGICAL SHIFT RIGHT

BGE BRANCH IF GREATER OR EQUAL TO ZERO

BGT BRANCH IF GREATER THAN ZERO NEG NEGATE

BHI BRANCH IF HIGHER NOP NO OPERATION

BIT BIT TEST

BLE BRANCH IF LESS OR EQUAL ORA INCLUSIVE OR ACCUMULATOR
BLS BRANCH IF LOWER OR SAME

BLT BRANCH IF LESS THAN ZERO PSH PUSH DATA

BMI BRANCH IF MINUS PUL PULL DATA

BNE BRANCH IF NOT EQUAL TO ZERO

BPL BRANCH IF PLUS ROL ROTATE LEFT

BRA BRANCH ALWAYS ROR ROTATE RIGHT

BSR BRANCH TO SUBROUTINE RTI RETURN FROM INTERRUPT
BVC BRANCH IF OVERFLOW CLEAR RTS RETURN FROM SUBROUTINE

BVS BRANCH IF OVERFLOW SET
SBA SUBTRACT ACCUMULATORS

CBA COMPARE ACCUMULATORS SBC SUBTRACT WITH CARRY
CLC CLEAR CARRY SEC SET CARRY

CcLI CLEAR INTERRUPT MASK SEI SET INTERRUPT MASK
CLR CLEAR SEV SET OVERFLOW

CLV CLEAR OVERFLOW STA STORE ACCUMULATOR
CMP COMPARE STS STORE STACK REGISTER
COM COMPLEMENT STX STORE INDEX REGISTER
CPX COMPARE INDEX REGISTER suB SUBTRACT

swi SOFTWARE INTERRUPT
DAA DECIMAL ADJUST

DEC DECREMENT TAB TRANSFER ACCUMULATORS
DES DECREMENT STACK POINTER TAP TRANSFER ACCUMULATORS TO CONDITION CODE REG
DEX DECREMENT INDEX REGISTER TBA TRANSFER ACCUMULATORS

TPA TRANSFER CONDITION CODE REG TO ACCUMULATOR
EOR EXCLUSIVE OR TST TEST

TSX TRANSFER STACK POINTER TO INDEX REGISTER
INC INCREMENT TXS TRANSFER INDEX REGISTER TO STACK POINTER

WAI WAIT FOR INTERRUPT

140

INST—2 Instruction Set

TABLF 3 — ACCUMULATOR AND MEMORY INSTRUCTIONS

ADDRESSING MODES COND. CODE REG.
BOOLEAN/ARITHMETIC OPERATION
ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (Al register labels sfalajz{1]o0
OPERATIONS mnemonic fop | ~ | # fop |~ | # fop |~z op|~|#]|OP|~]|= refer to contents) H{1|n|z|v]c
Add ADDA |88 | 2 | 2f98 |3 |2 {AB |5 |2]|BB|4 |3 A+M—A tleftftft]t
A00B fcB |2 |2 |oB|3 |2 eB |5 |2|FB|4|3 B+M—B tlel sttt
Add Acmlitrs ABA 18 2 1| A+B—~A tlef sttt
Add with Carry ADCA |83 | 2 | 2|99 |3 |2 (A9 |5 |2]|8B9| 4|3 A+M+CoA tleftitfs]e
ADC8 |c9 | 2 |2 |pg |3 |2 |es|s|2{F|4a]|3 B+M+C—~B tleltltfe]e
And ANDA |84 | 2 | 294 |3 |2 |a |5 |2]|8Ba| 4|3 AeM—A ele|t|t|R|®
ANDB |c4 | 2 |2 |Da|3 |2 |es |5 |2|Faial3 BeM-8 ele|t|t[R]|e
Bit Test BITA 8 | 2 | 2|9 |3 |2 (A5 |5 |2/[8B5|4]3 AeM ele|t|t|R|e
BITB cs| 2|2 os|3|2es |5 |2|F5]a|3 BeM ele[t|t(R|@
Clear CLR 6F |7 | 2|7 |63 00 > M e|e|R|S|R|R
CLRA 4F [2| 1{00~A e|elR|SIR|R
CLRB 5F z ij00—8 ® 8 RISRIR
Compare cvpA (81| 2 |2 |9 |3 |2 |Aa|5|2]|B1|4]3 A-M ole| t|t]t]¢
CMPB c1 2 2 |D1 3 2 |E1 5 21 F 4 3 B-M elef ittt
Compare Acmitrs CBA nij2|1i{a-8 elelt|t|t]s
Complement, 1's com 63 |7 2|1 |63 M-M ejel t|tlR|S
COMA 3121 A=A eleit|tiR]S
coms s3 (2 |1|B~8 eje|t|t|R|S
Complement, 2's NEG 60 |7 |2({7 |63 00 -M->M ele| 1| 10O
(Negate) NEGA 40 | 2 [1]00-A-A elef 1| 1O
NEGB 50 | 2| 1|00-B—8 ele| 1| tIODIO®
Decimal Adjust, A DAA 82| ﬁ“:’;";g‘n'?;‘fga:‘dd’“'Bcuc"a’“""‘ elejt|t|t @
Decrement DEC 6A |7 | 2|7Af6 |3 M-1-M elejt|t|@|e
DECA A2 1| A-1=A ejle|t|t|@|e
DECB saf2|1|8-1-8 ele|t|t|@|e
Exclusive OR EORA 88 2 2 |98 3 2 |A8 | 5 2 (B8 | 4 3 AaM—A ele|t|t|R]|e®
EORB c8 2 2 |08 |3 2 |E8 5 2| F8 | 4 3 BeM-—8 ele|lt|tIR|®
Increment INC 6C | 7| 2f1C |6 |3 M+1-M ole|t| 1|
INCA ac| 2| 1] A+1=A e|e| 1|t
INCB sc{2]1]|8+1>8 ol 1|1 @ (3
Load Acmitr LDAA 86 2 2 |96 3 2 |AB | 5 2 (86| 4 3 M-A ele| 1| .
was [ce| 2 |2fo6|3 |2 |5|2|F 4|3 M-8 ele|t|t|R]|e
0r, Inclusive 0RAA [8A| 2 |2 f9a |3 |2 |AAl5|2]|BA|4 |3 A4U-A ele|t|t|R]|e
ORAB CA| 2 2 |DA |3 2 |[EA| S 2 | FA| 4 3 B4+W-8 ele|t|t|R|®
Push Data PSHA 3 | 4 | 1| A—MgpSP-1-5P ole|o|ejefe
PSHB 37 {4 | 1{8-MgpSP-1-5P oleo|o|o]e
Pull Data PULA 32 4 1| SP+1-SP, Mgp—~>A ele(ojofo|e
PULB 33 | 4 | 1| SP+1-SP,Mgp—B ejlejelojo|e
Rotate Left ROL 69 [712|796]|3 M) — ejei t|1|@®]t
ROLA 9| 2(1]A l»{CJ « OOIITD— efe|]t $
ROLB s9 (2|18 R olelt|t|@|t
Rotate Right ROR 6 |7 |2[7 |6 |3 Ml [elelt|t|®|t
RORA |2 |1 |al Lo o oo elelt|t|@]1
RORB ss|2]1|s]l € 7 7™ oleft|t|®1
Shift Left, Arithmetic AsL 68 | 7| 2|18 |6[3 | . ele|t|t|®|?
ASLA 4z i A O« OO0 IR EIICIE
ASLB wl2|1|sl € 7 © ole|t|t|®]
Shift Right, Arithmetic ASR 67 |7 {21 |6 |3 [N elelt|t|®|t
ASRA a7 |2 |1|A f:éttmg--» 0 ele|t|t|®]t
ASRB s7 2|18 elelt|t|®|t
Shift Right, Logic. LSR 64 |7 | 2|76 |3 M N ele|r|1|®|t
LSRA 4 2 11 A OA;TTI—L_I,_FE - l;l e|e|R|? @ S
LSRB s |2 |1]8 olelr|t|®?
Store Acmitr. STAA 97 |4 |2 |a7 |6 |2]87|5]3 A-M ele|t|t|R]|e
STAB o7 h4 |2 |E7 (6| 2|F1 |5 |3 8-M olelt|t|r|e
Subtract susA (80| 2 | 2% |3 |2 fA0|s|z2|Bofa|3 A-M-A ole|t|t|s]t
susB |co| 2 |2 (D0 |3 |2 (€ |5 |2[F0 |43 B-M-8 olo|t|t|t]|s
Subract Acmltrs SBA 0|21 |a-8-A ole|t|t]|t]s
Subtr. with Carry SBCA 822 |2{92 |3 |2 |A2|5|2]|B82 3 A-M-C—A ofelt|t|t|s
SBCB c2| 2|2 fo2|3|2|e2|s|2|F|4]3 B-M-C—B eleft|tft]t
Transfer Acmitrs TAB 16 2 1| A-8 oleftitiR|e
T8A {2 |1]8=>A efe|t|t|r]|e
Test, Zero or Minus ST 60 |7 [2(m |6 |3 M-00 eleft|tiR|R
TSTA aw|2|1]|Aa-00 eleft|t|R|R
ST8 50 |2 |1|8B-00 eleltit|R|R
LEGEND: + Boolean Inclusive OR; Z Zero (byte)
OP Operation Code (Hexadecimal); @ Boolean Exclusive OR; V. Overflow, 2's complement
~ Number of MPU Cycles; M Complement of M; ¢ Carry from bit 7
E Number of Program Bytes; > Transfer Into; R Reset Always
Arithmetic Plus; 0 Bit=2Zero; S SetAlways
- Arithmetic Minus; 00 Byte= Zero; ¢ Test and set if true, cleared otherwise
» Boolean AND; H Halfcarry from bit 3; o NotAfiesed
Mgp Contents of memory location CCR Condition Code Register
pointed to be Stack Pointer; [Interrupt mask LS Least Significant
N Negative (sign bit MS Nost Significant

141

Instruction Set INST—3

TABLE 4 — INDEX REGISTER AND STACK MANIPULATION INSTRUCTIONS

INDEX REGISTER AND STACK IMMED DIRECT INDEX EXTND INHER sfaf3]2]1]o0
POINTER OPERATIONS MNEMONIC [0P [~ | # | op |~ [# [oP |~ [# |op |~ | #|op |~ | # | BOOLEAN/ARITHMETIC OPERATION | H |1 [N [Z |V |C
Compare Index Reg cPX sc|3f3fscfa|2]|ac|fs|2]|Bc|s |3 (Xp/X() - (M/M + 1) o|e |t |®]e
Decrement Index Reg DEX 09 | 4 1 X-1->X e|ejeillele
Decrement Stack Patr DES % (4] SP—1-SP olefefofe]e
Increment Index Reg INX 08 | 4 1 X+1->X elojojlle]e
Increment Stack Patr INS 31 (4] SP+1-SP ele|efofe]e
Load Index Reg Lox ce3 |3 |oEja|2(eef6 |2 (FeEfs |3 M= Xy, (M+1) > X ofe|G|t|R|e
Load Stack Prtr [86| 3 |3 |9E |4 |2 |AE|6 |2(BE|5 |3 M—>SPy, (M+1) > SP ole|@|t]|r|e
Store Index Reg STX oF |5 |2 |eF [7 [2|FF|6 |3 Xy =M, X~ (M+ 1) ole|®@|t|r|e
Store Stack Ptr sTS 9F |5 |2 |aF|7 |2 |8F |6 |3 SPy M, SPL > (M +1) ole|®|t|r]e
Indx Reg - Stack Ptr s 3 [4 |1 X -1-5P efle|e|ofe|e
Stack Patr > Indx Reg TSX 30 (4|1 SP+1-X olee]|o]efe
TABLE 5 — JUMP AND BRANCH INSTRUCTIONS

JUMP AND BRANCH RELATIVE INDEX | EXTND INHER sfafsaf2]1]0
OPERATIONS MNEMONIC fop | ~ | #fop| ~| #[op| ~| #|op|~ [# BRANCH TEST Hlt|njz|vic
Branch Always BRA |20]| 4] 2 None ole|e|efe]e
Branch If Carry Clear BCC u a2 c=0 o|e|efefe]e
Branch If Carry Set BCS 5|42 c=1 ole|efefe]e
Branch If = Zero BEQ 27| 4] 2 z=1 oje|efefo]e
Branch If > Zero BGE |42 Nev=0 ole|ofofo]e
Branch If > Zero 8GT ®E |42 Z+(NoV)=0 oje|efofo|e
Branch If Higher BHI 2|42 C+Z =0 olo|efefe]e
Branch If < Zero BLE |42 Z+(Nev)=1 olofefefe]e
Branch If Lower Or Same BLS 23|42 c+z=1 elefe]|o]|efe
Branch If < Zero BLT w|4]2 Nev=1 ojojofefo]le
Branch If Minus BMI 8|42 ele|e|o|e|e
Branch If Not Equal Zero BNE (26| 4| 2 ele|e|o|e|e
Branch 1f Overflow Clear BVC 8|42 ele|efole]e
Branch If Overflow Set BVS 29|42 ofejofefefe
Branch If Plus BPL m |42 olofelofofe
Branch To Subroutine BSR 8| 8| 2 elo|elo|e]e
Jump P 6e|a|2|1E[3]3 See Special Operations olo|efofo]e
Jump To Subroutine ISR ap| 8| 2|BDf9 |3 ojejeleje]e
No Operation NoP 0] 2|1 Advances Prog. Cntr. Only ole ole
Return From Intesrupt RTI B 101

Return From Subroutine RTS 395 |1 . oo
Software Interrupt swi 3 (12 |1]Seesneml Operations. ols|e|ole]e
Wait for Interrupt WAL 3E| 9|1 o|)je|o|o]e

TABLE 6 — CONDITION CODE REGISTER MANIPULATION INSTRUCTIONS

CONDITIONS CODE REGISTER INHER s1aj3f2]1 0
BOOLEAN
OPERATIONS MNEMONIC | OP ~ # | OPERATION | H | | | N vic
Clear Carry cLe oc 2 1 [g oo |eo|e|e |R
Clear Interrupt Mask cu 0E 2 1 [d] ® R e |e e o
Clear Overflow cwv 0A 2 1 0V e (e e e |R |e
Set Carry SEC 0o 2 1 1-C e |o e oo |5S
Set Interrupt Mask SEI 0F 2 1 11 e (S e |leo|e e
Set Overflow SEV 08 2 1 1=V e jejeje|sS |e
Acmitr A~ CCR TAP 06 2 1 A-CCR
CCR = Acmitr A TPA 07 2 1 CCR—>A

CONDITION CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)
(Bit V) Test: Result = 100000007
(Bit C) Test: Result # 000000007
(Bit C) Test: Decimal value of most significant BCD Character greater than nine?
(Not cleared if previously set.)
(Bit V) Test: Operand = 10000000 prior to execution?
(Bit V) Test: Operand = 01111111 prior to execution?
(Bit V) Test: Set equal to result of N ® C after shift has occurred.
(Bit N) Test: Sign bit of most significant (MS) byte of result = 1?
(BitV) Test: 2's overflow from of MS bytes?
(Bit N) Test: Result less than zero? (Bit 15=1)
(All) Load Condition Code Register from Stack. (See Special Operations)

(Bit1) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is
required to exit the wait state.

® OREEAEEHE OO

(ALL) Set according to the contents of Accumulator A.

142

INST—4 Instruction Set

M6800 PROGRAM

72 INSTRUCTIONS
6 ADDRESSING MODES

TR1074

DATA HANDLING INSTRUCTIONS
(Data Movement)

FUNCTION MNEMONIC OPERATION
LOAD ACMLTR LDAA | M-aA
LDAB | M -8B
PUSH DATA PSHA A - Mgp,SP — 1 = SP
PSHB B - Mgp, SP — 1 = SP
PULL DATA PULA | SP+1-SP,Mgp ~ A
PULB | SP+1 ~SP,Mgp =B
STORE ACMLTR STAA | A=M
STAB B=M
TRANSFER ACMLTRS | TAB A-~B
TBA B~A

TR1078

143

Instruction Set INST-5

DATA HANDLING INSTRUCTIONS
(ALTER DATA)

FUNCTION MNEMONIC | OPERATION
CLEAR CLR 00 -~ M
CLRA 00 -~ A
CLRB 00~ B
DECREMENT DEC M-1-M
DECA A-1-A
DECB B-1-8B
INCREMENT INC M+1-=M
INCA A+1-~A
INCB B+1-8B
COMPLEMENT, 2'S NEG 00-M-~M
(NEGATE) NEGA [00-A-A
NEGB 00-B -8B
COMPLEMENT, 1'S com M-M
cOoMA A=A
comB B~B

TR1076

DATA HANDLING INSTRUCTIONS
(SHIFT AND ROTATE)

FUNCTION MNEMONIC OPERATION
ROTATE LEFT ROL M
o |8 L e T
R
oLB 8 C by bo
ROTATE RIGHT ROR ™M
RORA | A | e T
RORB B C by bo
SHIFT LEFT, ARITHMETIC ASL M
asta [Al Qea— T T<—o
ASLB B I c by bo
SHIFT RIGHT, ARITHMETIC ASR M
—
ASRA A
ASRB B l t
b7 bo C
SHIFT RIGHT, LOGIC LSR Ml
tsra | Af 0 —s={TTTTTIT]—&0
LSRB 8 l by bg c

144

INST—6 Instruction Set

B

ARITHMETIC INSTRUCTIONS

FUNCTION MNEMONIC OPERATION
ADD ADDA | A+M=A
ADDB | B+M-B
ADD ACCUMULATORS ABA A+B-~A
ADD WITH CARRY ADCA | A+M+C~A
ADCB B+M+C-B
COMPLEMENT, 2'S NEG 00 - M ~M
(NEGATE) NEGA 00— A -A
NEGB 00 - B-~B
DECIMAL ADJUST, A DAA CONVERTS BINARY ADD. OF BCD
CHARACTERS INTO BCD FORMAT
SUBTRACT SUBA A-M-A
suBs B-M-~-8B
SUBTRACT ACCUMULATORS SBA A-B-~A
SUBTRACT WITH CARRY SBCA A-M-C-A
SBCB B-M-C-B

TR1078

LOGIC INSTRUCTIONS

FUNCTION MNEMONIC| OPERATION
AND ANDA AeM-~A
ANDB BeM~B
COMPLEMENT, 1'S com M-M
COMA A-A
COMB B—~B
EXCLUSIVE OR EORA AIM=A
EORB B+*M-B
OR, INCLUSIVE ORAA | A+M~-A
ORA B B+M=-8B

145

TR1079

Instruction Set

JUMP AND BRANCH INSTRUCTIONS

FUNCTION

BRANCH ALWAYS
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH IF PLUS

IF CARRY SET
IF = ZERO
IF = ZERO
IF > ZERO
IF HIGHER
IF < ZERO

IF < ZERO
IF MINUS

IF CARRY CLEAR

IF LOWER OR SAME

IF NOT EQUAL ZERO

MNEMONIC | BRANCH TEST
BRA NONE
BCC C=0
BCS C=1
BEQ Z=1
BGE NeV=0
BGT Z+(NeV)=0
BHI c+Z =0
BLE Z+(NaV)=1
BLS cC+2Z2=1
BLT NeV=1
BMI N=1
BNE 2=0
BPL N=0

TR1080

JUMP AND BRANCH INSTRUCTIONS

FUNCTION

MNEMONIC

BRANCH TEST

BRANCH IF OVERFLOW CLEAR
BRANCH IF OVERFLOW SET
BRANCH TO SUBROUTINE
JUMP

JUMP TO SUBROUTINE

NO OPERATION

RETURN FROM SUBROUTINE

BVC
BVS
BSR
JMP
JSR

NOP
RTS

ADVANCES PROG. CNTR. ONLY

146

TR1081

INST-7

INST-8

Instruction Set

DATA TEST INSTRUCTIONS

FUNCTION MNEMONIC| TEST
BIT TEST BITA AeM
BITB BeM
COMPARE CMPA A-M
CMPB B-M
CBA A-B
TEST, ZERO OR MINUS TST M- 00
TSTA A —-00
TSTB B - 00

TR1082

CONDITION CODE REGISTER INSTRUCTIONS

FUNCTION

MNEMONIC OPERATION

CLEAR CARRY

CLEAR INTERRUPT MASK
CLEAR OVERFLOW

SET CARRY

SET INTERRUPT MASK
SET OVERFLOW

ACMLTR A -CCR

CCR - ACMLTR A

CLC
CLI

CLv
SEC
SEI

SEV
TAP

TPA

0~-C
0-1
0~V
1-C
1-1
1-V
A -+ CCR

CCR-A

147

TR1083

Instruction Set

INDEX REGISTER AND
STACK POINTER INSTRUCTIONS

FUNCTION MNEMONIC OPERATION
COMPARE INDEX REG CcpPX XH-M, XL -(M+1)
DECREMENT INDEX REG DEX X-1—X
DECREMENT STACK PNTR DES SP — 1—SP
INCREMENT INDEX REG INX X+1-X
INCREMENT STACK PNTR INS SP + 1—SP
LOAD INDEX REG LDX M—Xy, (M + 1)—=X
LOAD STACK PNTR LDS M—SPy, (M + 1)—SP
STORE INDEX REG STX Xy —M, X —(M+1)
STORE STACK PNTR, STS SPy—M,SP — (M +1)
INDX REG—STACK PNTR TXS X—-1—SP
STACK PNTR —INDX REG TSX SP+1—X

TR1084

INTERRUPT HANDLING INSTRUCTIONS

FUNCTION MNEMONIC OPERATION
SOFTWARE INTERRUPT swi REGS - Mgp
SP-7 - SP
MepFa — PCH
Merrg — PCL
1-1
RETURN FROM INTERRUPT RTI Mgp — REGS
SP+7 — SP
WAIT FOR INTERRUPT WAI REGS - Mgp
SP-7 - SP

148

THI08

INST—9

INST—10 Instruction Set

INPUT/OUTPUT INSTRUCTIONS

NONE!

TR1085

149

Program Problems

151

SAMPLE PROGRAM

PROBLEM:

SOLUTION:

MEMORY

LOCATION

(HEX)

0008
oooc
000D
000E
000F
0010
0011
0012
0013
0014

Program Problems PROG-1

WRITE A PROGRAM, IN MACHINE LANGUAGE AND IN M6800
SOURCE LANGUAGE, TO ADD THE DECIMAL NUMBERS 25, 35, 50,
AND 17. STORE THE ANSWER AT RAM LOCATION 0OA. ASSEMBLE
THE SOURCE PROGRAM AND COMPARE THE ASSEMBLED PRO-
GRAM WITH THE MACHINE LANGUAGE PROGRAM.

3510 = 1000112 = 2315
5010 = 1100102 = 3215
1719 =0100012 = 1115
2510 =0110012= 1916

MACHINE

LANGUAGE
(BINARY) (HEX)
10000110 (86)
00011001 (19)
10001011 (8B)
00100011 (23)
10001011 (8B)
00110010 (32)
10001011 (8B)
00010001 (1)
10010111 (97)
00001010 (0A)

1563

COMMENT

LDA A IMM
DATATOBEPUTINA
ADD A IMM

DATA TO BE ADDEDTO A
ADD A IMM

DATA TO BE ADDED TO A
ADD A IMM

DATA TO BE ADDEDTO A
STORES A IN LOCATION
0A

TR1189

PROG—2 Program Problems

READY
LIST
ADD4NE 20 38FST 11711775
160 NAM ADD4NR ADD 4 NUMPERS PROGKAM
110 OKG $A SAME PROGRAM
120 TEMP RMP 1 WRITTEN IN
oo LpA A MNEMONIC CODING
150 ADD A #$32 #= INDICATES IMMEDIATE
170 614 A TEap $ INDICATES HEX NUMBER
180 Mow % INDICATES BINARY NUMBER,
TR1073
READY
FUN MPCASM
MPCASM 202 39EST 11711775
MOTOROLA SPD, INC. OWNS AND IS RESPONSIKELF FOR MPCASH
COPYELIGHT 1973 & 1974 BY MOTOROLA INC

- MOTOROLA MPU CPOSS ASSEMELEK, KELEASE 1.4

ENTER SI1 FILENAME
2ADD4NR

PAGF 1 ADDA4NE 11711775 20:39.00
00100 NAV ADDA4NR ADD 4 NUMPERS PROGEAM
00110 000A ORG $A
00120 O00OA 0001 TEMP EMRB 1
00130 OOOE 86 19 LDA A #25 SAME PROGRAM
00140 000D 8P 23 ADD A #35 ASSEMBLED BY
00150 000F BR 32 ADD A #%32
00160 0011 8P 11 ADD A #%10001 TIME - SHARIN &
00170 0013 97 0A STA A TEYP . —ASSEMBLER.
00180 MON CRO55—A

TR1190

154

Program Problems

READY
LIST

ADD4NE 20: 38FST 11711775

100 NAM ALD4NR ADD 4 NUMPEKS PROGRAM
110 ORG sA

120 TEMP RME 1

130 LDA A #25

140 ADD A #35

150 ADD A #%32

160 ADLC A #210001

170 STA A TFMP

180 MON

RFEADY

FUN MPCASM

MPCASM 202 39EST 11711775

MOTOROLA SPD, INC. OWNS AND IS RESFONSIFLF FOR MPCASM
COPYEIGHT 1973 & 1974 BY MOTOROLA INC

MOTOROLA MPU CPOSS ASSEMBLEK, KELEASE 1.4

ENTER SI FILENAME
?ADDANR

PAGF 1 ADD4NF 117/11/75 20:39.00

00100 NAM ADD4NR ADD 4 NUMBERS PROGEAM
00110 000A ORG $A

00120 000A 0001 TEMP RMR 1

00130 OOORBR 86 19 LDA A #25

00140 000D 8P 23 ADD A #35

00150 000F 8R 32 ADD A #%32

00160 0011 B8P 11 ADD A #210001

00170 0013 97 0A STA A TEMP

00180 MON

155

PROG-3

TR1073

TR1190

PROG—4 Program Problems

156

Program Problems PROG-5

CLEAR MEMORY LOCATIONS $70 thru $78

START

INITIALIZE START
MEMORY ADDRESS

]

CLEARA
MEMORY
LOCATION

'

INCREMENT
MEMORY
ADDRESS

LAST YES [\

LOCATION

TR1211-1

157

PROG—6 Program Problems

A SOLUTION

L1

LDX #$70
CLRO,X
INX

CPX #$79
BNE L1
BRA *

OTHER SOLUTIONS

(B)
L1

(C)

MORE

LDX #$9
CLR $6F, X
DEX

BNE L1
BRA *

LDS #$78
CLRA

PSH A
TSX

CPX #3$70
BNE MORE
BRA *

1568

Program Problems PROG-7

PROBLEM

Clear memory in locations 0000 through $00FF.

159

PROG--8 Program Problems

SOME SOLUTIONS

(1)

AGAIN

(2)
AGAIN

AGAIN

LDX #$0
CLRA
STAAOQX
INX

CPX #$100
BNE AGAIN
BRA *

LDX #$0
CLRO,X
INX

CPX #$100
BNE AGAIN
BRA *

LDX #$FF
CLR 0, X
DEX

BNE AGAIN
CLRO,X
BRA *

CLEAR MEMORY

(0~ FF)

13 BYTES
4360 CYCLES

11 BYTES
4611 CYCLES

10 BYTES
3850 CYCLES

160

Program Problems PROG-—9

PROBLEM

Load memory with a data table:

ADDR DATA
0000 00
0001 01
0002 02
0003 03
00FD FD
O0FE FE
00FF FF

161

PROG—-10 Program Problems

A SOLUTION

NEXT

LDX #$0
CLRA
STA A $0,X
INC A

INX

CPX #$100
BNE NEXT
BRA *

162

PROBLEM

Program Problems PROG-11

Write a program to build a table from 0- FF MEM location. The data in this table

istobe FF = 0.

ADDR DATA
0000 FF
0001 FE
0002 FD
00FD 02
00FE 01
O0OFF 00

163

PROG—12 Program Problems

SOME SOLUTIONS

(A)

AGAIN

AG

LDA A #$FF
LDX #$00
STA A $0,X
INX

DECA

BNE AGAIN
STA A $FF
BRA *

LDS #$FF
CLRA
PSH A
INCA
BNE AG
BRA *

164

Program Problems PROG-13

PROBLEM — Move or Transfer $80 Bytes of Data

The first byte is located at memory location 0000, and is to be transferred to
memory location $100. Start your program at $500. This problem can be solved by
using only the index register and the A accumulator.

ADDR DATA ADDR DATA

0000 0100

3 MPU —————3r

007F 017F

BEFORE MOVE AFTER MOVE

165

PROG—-14 Program Problems

PROBLEM

Move $80 bytes of data from MEM LOC’s 0 - $7F to MEM LOC’s $100 = $17F.

A SOLUTION

LDX #$0
MORE LDA A $0,X

INX

STA A $FF X

CPX #$80

BNE MORE

BRA*

166

Program Problems PROG-—15

PROBLEM — Move or Transfer $100 Bytes of Data.

The first byte to be moved is located at memory location 0000 and this byte is to
be moved to memory location $1000.

ADDR DATA ADDR DATA
0000 1000
> MPU
00FF 10FF
BEFORE MOVE AFTER MOVE

167

PROG—-16 Program Problems

PROBLEM

Move $100 bytes of data from $0 to $1000.

A SOLUTION

LDX #$1000
LDS #$FFFF
MORE PUL A
STA A $0,X
INX
CPX #$1100
BNE MORE
BRA*

168

Program Problems PROG-17

PROGRAMMING PROBLEM FOR THE THIRD DAY

To gain some “hands-on’’ experience in both software and hardware, we ask that
you attempt this homework problem before the beginning of the third-day session.
You will have the opportunity to assemble and run your program solution on the
EXORciser. You will receive personal help and coaching in areas where you require
them.

Assume, as part of your system, you have two MCM6810 RAMs which start at
the very bottom of memory. Your problem is to check the first (lowest) five bytes of
the second RAM. If the contents of the RAM location is an odd number, invert each
bit and store this result back in that RAM address. If the contents of that RAM
iocation is an even number, clear that RAM location. Write the source program to
accomplish the above problem. Start your program at location $2000. Include a flow-
chart of your solution.

169

Example Programs

17

Example Programs and Systems

EXAMPLE PROGRAMS AND SYSTEMS

Table of Contents

Loadingand Storing Datavtit ittt e e
Subtracting Absolute Value.
PIA Polling ROUtiNeo e e e
Event Counter Priority Service Routineuiuunnnneennn. ..
Multiply Subroutine
System — BCD to LED Display. . ..o vv it i e e e e e
System — Machine Control i

ACIA Memory Load/Dump Program.t

All sample programs are for illustration only. It may not be
the most efficient soiution and is shown oniy as an exampie

of programming techniques.

173

EX-1

EX—2 Example Programs and Systems

SAMPLE PROGRAM — Loading and Storing Data

Write a program for the following sequence.

1.

Assume this program will be used
addresses 000 through 200 (512 bytes)

memory location 50.

Begin with data 7F and load it into the A accumulator, then store the data in

From location 50, load the data into the B accumulator, then store it ex-

tended in memory location 0113.

Reload data into the A accumulator from the extended memory location

and store the data in location 6A, then Jump back to the beginning.

bytes). All numbers are in Hex relation.

Source Program

EDUIL 122 03EET N2 - 0%
100 HAM LTR1

101 OFT MEM

102 0OrG 3eA

102 TEMP PMB 1

105 0ORG $0300

110 START LDA A #§7F ZTART
120 =TA A 350

130 LDR B $50 ADDRESE
140 =TA B #0113

150 LDA A $0112

130 TR A TEMP

1306 JMP ZTART

200 MON

Assembled Program

00100 NAM
00101 arT
00102 00BR [s]=153
NO103 O0sA 0001 TEMP RME
00105 0800 Ori
00110 0200 2B 7F ZTART LDA
oulzo wsoa 27 SO ZTH
00130 0304 Db SO LIA
00140 0806 F7 0113 TR
00150 N209 B6 0113 LDA
00180 080C 97 6R STA
00190 08O0E 7E 0800 JMP
00200 MON

in a microcomputer system with Hex RAM
and ROM addresses 800 through FFF (2048

OF PROGRAM

OF DATH

LTR1
MEM
FEA

1
0300
«$7F
350
30
$0113
$01123
TEMP
START

TTART OF PROGRAM

ADDRPEZZ OF DATH

T I D

174

Example Programs and Systems EX-—3

SAMPLE PROGRAM — Subtracting Absolute Value of Two Numbers

Problem: Calculate a quantity Z which will be absolute value of Y subtracted
from the absolute value of W. If the result is less than or equal to
zero, set Z equal to zero.

Z=|W|-]Y|

Z=0

if IW[>1Y]
ifIWI<|Y]|

Source Program for Absolute Value Problem
100 NAM ABS
110 OPT M
120 ORG O

130 W RMB 1
140 Y RMB 1
150 Z RMFE 1
160 ORG $0500

170 LDA A W
180 FPPL Z1 IS W POSITIVE?
190 NEG A W WAS NEG»
200 z1 LDA
210 PPL Z2 IS Y POSITIVE?
220 NEG B Y WAS NEG,»
230 Z2 SBA SUBTRACT Y FROM W
240 BGT Z3 IS Z POSITIVE?

250 CLR A RESULT WAS ZERO OR NEG.
260 Z3 STA A Z STORE ANSWER IN Z.
270 PRA =*
280 MON

R Y

MAKE POS.

MAKE POS.

Assembled Program for Absolute Value Problem

00100
00110
00120
00130
00140
00150
00160
00170
Q0180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280

0000
0000
0001
0002
0500
0500
0so02
0504
0505
0507
0509
050A
050B
050D
OSOE
0510

01

o2
FE

N < e

™~
—

z2

NAM
OPT
ORG
RMR
RMB
RME
ORG
LDA
BPL
NEG
LDA
BPL
NEG
SBA
BGT
CLR
STA
BRA
MON

ABS
M
(o]
1
1
1
$0500
A W
zZ1
A
B Y
72
P
Z3
A
A 7
*

175

IS W POSITIVE?
W WAS NEG, MAKE POS.

IS Y POSITIVE?

Y WAS NEG, MAKE POS.
SUBTRACT Y FROM W

1S Z POSITIVE?

RESULT WAS ZERO OF NEG.
STORE ANSWER IN Z.

EX--4 Example Programs and Systems

W —b A
YES NO 0-A-p A

y—8

o8-8

YES B>0 NO

A-B = A

YES /l\ NO

O-p A

A2

176

D1537

Example Programs and Systems EX-5

PIA POLLING ROUTINE

The following routine illustrates one of the various techniques of determining
which PIA has generated an interrupt. Recall that each PIA has an A side and a B side
which may cause the TRQ line to go low thus generating an interrupt. All the PIA
interrupt lines are tied together and connected to the one interrupt input pin (IRQ) of
the MPU. Consequently, when an interrupt is generated, some bit 6 or bit 7 of a PIA
is set. The only way to determine where the interrupt came from is to poll bit 6 and
bit 7 of each PIA control register to see if it is a /1" (thus an interrupt).

This routine polls the control registers of two PIAs. It reads the contents of
each control register and executes the BMI instruction which effectively checks to see
if bit 7 is set. If bit 7 is not set, a ROL A instruction is executed which shifts bit 6
into bit 7 thus permitting use of the BMI instruction again. Once a set control bit
is detected, it branches to a subroutine to service that particular interrupt. After
servicing the interrupt, an RTI instruction is executed which causes the processor
to return to whatever it was doing before the interrupt.

PIA POLLING EXAMPLE SYSTEM BLOCK DIAGRAM

a SMOKE
R DETECTOR

MPU

FIRE
DETECTOR

INTRUSION
< DETECTOR
RAM | | | | b= OFFICE

INTRUSION
DETECTOR
LAB

ROM

L] ™A CALL

FIRE DEPT

S— CALL
POLICE

177

EX—6 Example Programs and Systems

READ
NEXT

Flow Chart for PIA Polling Routine

READ
FIRST
PIA

SHIFT
LEFT ONE
BIT

IS
BIT 7

178

YES

SERVICE ROUTINES

(CR7 SET)
PIA1AC ROUT 1
PIA1BC ROUT 3
PIA2AC ROUT 5
PIA2BC ROUT 7

SERVICE ROUTINES

(CR6 SET)
PIATAC ROUT 2
PIA1BC ROUT 4
PIA2AC ROUT 6
PIA2BC ROUT 8

)

100
110
120
120
140
150
cnn
210
aen
=
240
250

410

420
20
440

S0
410
470
320
430
S0n
S0
20
S20

S40

Example Programs and Systems EX-—7

Source Program for PIA Polling Routine

NRAM FOLL
OFT MEM
FIRIAC EO
FIRLEC EOU
PIAZRAC EQU
PIRZRC EU
aFs F1on
FOLL LA A
EMI FOUTL

FOL H

EMI rOUTE
LDA
EMI FOUTZ
FOL H

EMI FPOUTS
LIA
EMI FROUTS
FOL H

EMI FOUTE
LI
EMI FROUTT
FOL A

EMI rROUTSE
FTI

FOUT1 HOF
FTI
FOUTE
FTI
FOUT =
FTI
FOUTS
FTI
FOUTS
FTI
FOUTE
FTI
FOUTT
PTI
POUTS
FT1
MOM

HaOF

HOF

HOF

HOF

HOF

MOF

R]0] 4

4005
F4007
B4002
F300F

FIR1AC

H PIAR1ELC

H FIRZAC

A. FIRZEC

eTHIZ

oTHI:

oTHIC

eTHIZ

*THIE

oTHIZ

eTHI:

eTHIZ

Iz

1z

Iz

I:

I:

I:Z

) gt

12

FIARIAC CH1
FIR1AC CAS
FIALEC CE1
FIARIEC CEC
FIARZAHC CHL
FIACHC CRHZ
FiHEPl CE1
PIAZEC CEC

179

ZERYICE

ERVICE

TEPYICE

© TEFVICE

ZERVICE

ERVICE

TERWICE

* ZERWICE

FOUTINE

FOUTINE

FOUTINE

FOUTINE

FOUTINE

FOUTINE

FOUTINE

FOUTINE

TR1131

00100
00110
00120
00130
00140
00150
00200
00210
00220
00230
00240
00250
00260
0oa2vo
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00450
00500
00510
00520
003530
00540

Example Programs and Systems

0100
0100
0103
010S
0106
0108
010B
010D
010E
0110
0113
0115
0116
0118
011B
011D
011E
0120
o121
o122
0123
0124
012S
0i2e
0127
0128
0129
012A
012B
o12C
012D
012E
012F
0130

4005
4007
4009
400B

B6 4005
2B 1C

2B 1B
B6é6 4007
2B 18

2B 17
B6 4009
2B 14

2B 13
B6 400B
2B 10

Assembled Program for PIA Polling Routine

PIAIAC
PIA1BC
PIRA2AC
PIR2BC

POLL

ROUT1
ROUTZ
ROUT3
ROUT4
ROUTS
ROUTS
ROUT?

ROUTS

NAM
aPT
EQU
EQU
EQU
EQU
ORG
LDA
BMI
rROL
BMI
LDR
BMI
ROL
BMI
LDRA
BMI
RrROL
BMI
LDA
BMI
ROL
BMI
RTI
NOP
RTI
NOP
RTI
NOP
RTI
NOP
RTI
NOP
RTI
NOP
RTI
NaP
RTI
NOP
RTI
MON

» » D» » D® D® D

X

POLL
MEM
$400S
$4007
$4009
$400B
$100
PIA1AC
ROUT1L

ROUT2
PIA1BC
ROUT3

ROUT4
PIAR2AC
POUTS

ROUTE .

PIAR2BC
ROUT?

ROUTS

180

®THIZ
OTHIZ
oTHIZ
oTHIS
*THIS
oTHIS
oTHIS

oTHIS

-
(%]

Ll
(%]

IS

PIA1AC

PIA1AC

3 PIR1BC

PIR1BC
PIR2AC
PIR2RC
PIA2BC

PIR2BC

CB2
CA1
CRe
CB1

CB2

SERVICE
SERVICE
SERVICE
SERVICE
SERVICE
SERVICE
SERVICE

SERVICE

TR1132

Example Programs and Systems EX—9

EVENT COUNTER PRIORITY SERVICE ROUTINE

Three event counters are used to monitor a process. The value of each of these
counters is read (using PlIAs) and stored in memory. A unique service routine is
required depending on which counter has the greatest number. If two counters have
the same number which is greater than the third, then the priority of service is M
(located at $0), P (located at $1), then U (located at $2). The service routine for
M largest is at $EQQOQ, P largest is at $D000, and U largest is at $C000. Program to start
at location $1000.

Basic Fiow Chart

START

YES
NO
NO
GOTO GOTO GOTO
M u P
SVC. RTN. SVC. RTN. SVC. RTN.

181

EX—10 Example Programs and Systems

PAGE 1

00100
00110
00120

00130
00140

00150
00160

00170
00180

00190
00200

00210
00220

00230
00240
00250
00260

00270
00280

00290
00300

00310
00320

00330
00340

00350

1000

1000

1002

1004

1006

1008

100A

100D

100F

1011

1013

1016

GTR

96

91

25

91

25

7E

96

91

25

7E

TE

00

o1

07

02

ocC

EO0O0

o1

02

03

D000

Ccooo

Assembled Program

127037175 14:12.00

NAM GTR
OPT ™
ORG $1000

*LOAD M INTO ACC A FROM $O
LDA A $0

*COMPARE ACC A VITH P IN 81
CMP A 81

*IF P>M GO TO PGREAT
BCS PGREAT

*COMPARE ACC A WITH U IN s$2
CMP A 2

*IF U>M GO TO UGREAT
BCS UGREAT

*OTHERWISE JUMP TO M SERVICE ROUTINE
JMP SE0O0O0 M IS THE LARGEST

*LOAD P INTO ACC A FROM sl

PGREAT LDA A $1

*COMPARE ACC A WITH U IN s2
CMP A 82

*1F U>P GO TO UGREAT
BCS UGREAT

*OTHERWISE JUMP TO P SERVICE ROUTINE
JMP $D0O0O0 P IS THE LARGEST

*U GREATER, JUMP TO U SERVICE ROUTINE
UGREAT JMP $C000

MON

182

Example Programs and Systems EX—11

MULTIPLY SUBROUTINE

This subroutine multiplies two 8-bit unsigned binary numbers. The product of
the two 8-bit numbers is formed by shifting the multiplier one bit to the right and
checking for a one or zero. |f a one is present, the multiplicand is added to the
product (answer).

The multiplicand is then shifted one bit to the left. This has the effect of multi-
plying the multiplicand by two. The multiplier is again shifted one bit to the right and
the shifted bit checked for a one or zero. If it is a one, the shifted multiplicand is
added to the product. The process is repeated until the multiplier has no more ones
remaining. When no more ones remain in the multiplier, the problem is finished and
the product is the finai product.

Example
Multiply 17019 x 510 = 85010
17010 = AA1p
5 = 051¢
1010 1010 Multiplicand (M)
0000 0101\ Multiplier (N)

This 1 requires the multiplicand M to be added to
product.

This 1 requires the multiplicand shifted left twice
(4 x M) to be added to the product.

Since all remaining higher bits of -the multiplier are
zero, the problem is finished.

1010 1010 M
10 1010 10

4 xM
111 0101 l 0010

3 5 2

AA16 x 516 = 35216 = 85010

183

EX—-12 Example Programs and Systems

FLOW CHART
OF MULTIPLY

ROUTINE
CLEAR
TEMP RAM
LOCATIONS
SHIFT
MULTIPLIER
RIGHT ONE BIT
1S
LSB OF YES
MULTIPLIER
SET
SHIFT '
MULTIPLICAND ADD
LEFT ONE BIT MULTIPLICAND
\ TO ANSWER
MULTIPLIER

EQUALTO
ZERO

TR1141

184

Example Programs and Systems EX—13

FEADY
LIST

CMULT 203 52EST 11711775

100 NAM CMULT
110 OPT M,S
120 #4024 2740428252222 420 R28 020X PRS2SR RABERES

130 * REV 003 11-10-75 BAINTER

140 =

150 = THIS SUEROUTINF MULTIPLIFS TWO 8 BIT EYTES.
16C = THE MUL1IPLICAND IS STOREL IN BYTE NBl.

170 * THE MULTIPLIER IS STORFD IN BYTE NBR2.

180 = THF FESULT 1S STOKEL IN BYTES ANS2 ANL ANSl.
190 * ANS2 IS THE UFPER BYTE OF THE RESULT.

200 = ANS1 IS THE LOWER PYTE OF THE RESULT.

210 %24 % XXX A R R XXX R RARRE B RXREERERAREBRERRER SRR RS XA RS RSk h Ak ks
220 SPC 1

230 ORG O

240 NB1A RME 1 SHIFT MULTIPLICAND STORE

250 NB1l RMPE 1 MULTIPLICAND

260 NE2 RMF 1| MULTIPLIER

270 ANS2 RME 1 UPPER RYTE OF RESUL1

280 ANS1 RMP 1 LOWER BYTE OF KESULT

290 SPC 1
300 ORG $10
310 SPC 1

330 MULT CLF A CLEAP ANSWER & SHIFT AREAS
340 STA A NFI1A

350 STA A ANSI

360 STA A ANS2

370 LDA A NBZ NE2=MULTIPLIER

380 PBFRA LOOPI

385 SPC 1

390 LOOP2 ASL NF1 SHIFT MULTIPLICAND LEF1
400 ROL NE1A UPPER BYTE OF MULTIPLICAND
410 LOOP1 LSE A SHIFT MULTIPLIER R]GHT
420 FCC NOADLC SHIFT AND DON°'T ADD

430 LDA B ANS1 ADD SHIFTED MULTIPLICAND-
440 ADD B NR1 TO ANS1 AND ANS2.

450 STA B ANS! LOWER RYTE OF RESULT

460 LDA B ANS2

470 ADC B NE1A ADD WITH CARRY

480 STA B ANS2 UPPER BYTE OF RESULT

490 TST A

SN0 NOADD ENE LOOP2 START SHIFTING AGAIN,
510 RTS FINISHED!!!
520 ™MON

READY

185

EX—14 Example Programs and Systems

PAGE 1

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210

00230
00240
00250
00260
00270
00280

00300

00330
00340
00350
00360
00370
00380

00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

0000
0000
0001
0002
G003
0004

0010

0010
0011
0013
0015
0017
0019

001P
O01E
0021
0022

0024
002¢

0028
002A
0o2C
002E
0030
0031
0033

CMULT

0001
0001
0001
0001
0001

97 00
97 04
97 03
96 02
20 06

78 0001
79 0000

24 0D
D6 04
DR 01}
D7 04
D6 03
D9 00
D7 03

26 E8

SYMBOL TAPBLE

ANS1
NB1

0004 ANS?2
0001 NBI1A

11711775 20:55.00

NAM
OPT

CMULT
M,S

L e e P P R R P RS PR L L L 2
1-10-75 BAINTEER

REV 003

1

THIS SURROUTINE MULTIPLIES TWO 8 RIT BYTES.
THE MULTIPLICAND IS STORED IN PYTE NBI.

THE RESULT IS STORED IN BYTES ANS2 AND ANSI1.
ANS2 IS THE UPPER RYTE OF THE RESULT.

ANS1 IS THE LOWER BYTF OF THE RESULT.

EE e e R

ORG
NR1A FMP
NP1 RMR
NP2 RMB
ANS2 HME
ANS1 RMB

ORG

MULT CLR
STA
STA
STA
LDA
FRA

LOOP2 ASL
ROL
LOOP1 LSR
RCC
LDA
ADD
STA
LDA
ADC
STA
TST
NOADD BNE
RTS
MON

0003 LOOPI
0000 NBR2

PDPD>DPD

>

DPTMDDDMD

————-0

$10

NB1A
ANS 1
ANS2
NB2

LOOP1

NP1
NB1A

NOADD
ANS1
NB1L
ANS1
ANSZ
NB1A
ANS2

LooP2

0021 LOOP2
0002 NOADD

186

*
*
*
*
* THE MULTIPLIER IS STORED IN BYTE NR2.
*
*
-
*

SHIFT MULTIPLICAND STORF
MULTIPLICAND

MULTIPLIER

UPPER PYTE OF RFSULT
LOWFR RYTE OF KESULT

CLEAR ANSWER & SHIFT AKEAS

NR2=MULTIPLIER

SHIFT MULTIPLICAND LEFT
UPPER BYTE OF MULTIPLICAND
SHIFT MULTIPLIER RIGHT
SHIFT AND DON'T ADD

ADD SHIFTED MULTIPLICAND-
TO ANS! AND ANS2.

LOWER RYTE OF FESULT

ADD WITH CARRY
UPPER PYTE OF RESULT

START SHIFTING AGAIN
FINISHED!I !

001P MULT 0010 TR1143
0031

RUN MPsSIv

MPSSIM 21201EST 11711775

MOTOROLA SPD, INC.
COPYRIGHT 1973 &

MOTOROLA MPU SIMULATOH,

ENTER MF FILENAME
2CMULTI

BASE /S HEX
FILE'S
x|

YEL 3

1A ocC
*0000 »==
™ML

EA P X A P C
*0000*0001 0000 00 00 000Z0O0

MACRO LIBRARY LISTING

TR (SR P10,SO0F0,TO«SM1,#1,02.T50.DM0,5)
GO (SR P10,SO00F0,TO.SM1,¢1,¢2.R100.DM0, 5]
RES (DMO0,5)

RELEASE 1.2

Example Programs and Systems EX-15

OWNS AND IS KESPONSIBLE FOR MPSSIM
1974 BY MOTOROLA INC

INPUT AND DISPLAY

S MF FOR CMULT PROGRAM SIMULATION.

S T
00F2 0000104

UIST OF MACROS THAT
WERE DEFINED BEFORE
IN A RUN OF CMULT/
ON MPSSIM

1 MAINING CHARACTERS
TR OAA, y

TRACE WITH NBI =AA; =170,

#0010 CLR A®0010#0011 0000 00 00 000Z00*00FO 0000002 NB2=0.
0011 STA A#0000N013 000N OO NO 000700 OOFO 0000006
*«0013 STA A*0004%0015 0000 00 00 000Z00 OOFO 0000010
#0015 STA A*0003+0017 0000 00 00 000Z0OO OOFO 0000014
#0017 LDA A»0002+#0019 0000 00 00 000Z00 OO0FO 0000017 NOTE NUMBER OF
*0019 BRA +001A*0021 0000 00 00 000ZOO OOFO 0000021
#0021 LSR As0021%0022 0000 00 00 (0NZOO OOFO 0000023 MACHINE CYCLES
0022 BCC #0023#0031 0000 00 00 000Z0O OOFO 0000027 REQUIRED TO
*0031 ENE +0032#0033 0000 00 00 000Z00 OOFO 0000031
HH 1A oOC EA P X A P c s T COMPLETE
#0033 RTS *00F2¢0000 0000 00 00 000Z00*0OF2 0000036 MULTIPLICATION
INST FAULT .

0000 00 00 000Z00 OOF2 0000038

*0000 **+ »0000*0001
?RES

0000 00 AA 00 00 OO0

ANS 2 —T t—— ANS/

o RESULT OR ANSWER = 00 00-

RES MACRO wiLL
DISPLAY MEMORY
LOCATIONS STARTING

AT LOCATION 00 (2ERO).
THE NUMBER OF
LOCATIONS DISPLAYED

IS FIVE.

TR1144

187

EX—16 Example Programs and Systems

TRACE N8B/ = S5, =5,o

/6
R s 5/‘/ NB2=5,, =5,
»
510 X S0 = 25,0 =194

=0010 CLR A=*0010*0011 0000 00 00 0O00ZOO=0O0OF0O 0000002
=0011 STA A=*0000*0013 0000 00 00 000Z0OO OOFO 0000006
#0013 STA A+0004+0015 0000 00 00 000Z0O0 OOFO 0000010
*0015 STA A*0003*0017 0000 00 00 000Z0OO OOFO 0000014
*0017 LDA A*0002%0019 0000%#05 00 000000 OOFO 0000017
#0019 BRRA =*001A*0021 0000 0% 00 000000 OOFO 0000021
*0021 LSR A*0021%0022 0000%02 00 0O00O0OVC OOFO 0000023
=0022 BCC *0023»0024 0000 02 00 0000OVC OOFO 0000027
HH IA ocC FA P X A P [o} S T
*0024 LDA B*0004%*0026 0000 02 00 000ZOC OOFO 0000030
*0026 ADD B#0001*0028 0000 02+05 000000 ONFO 0000033
*0028 STA B*0004*002A 0000 02 05 000000 OOFO 0000037
*002A LDA B*0003%002C 0000 02#00 000Z00 OOFO 0000040
*002C ADC B*0000*002E 0000 02 0O 000Z00O OOFO 0000043
*002E STA B*0003*0030 0000 02 00 000Z00 OOFO 0000047
*0030 TST A*0030%0031 0000 02 00 000000 OOFO 0000049
0031 BNE =»0032#*001!B 0000 02 00 000000 OOFO 0000053
*001R ASL *0001*001F 0000 02 00 000000 OOFO 0000059
*001E ROL 00000021 0000 02 00 000Z0OO OOFO 0000065
HH IA ocC EA P X A B [} S T
*0021 LSR A*0021*0022 0000*01 00 000000 OOFO 0000067
*0022 BCC *0023*0031 0000 01 00 000000 OOFO 0000071
*0031 BNE =»0032*001EF 0000 Ol 00 000000 OOFO 0000075
=*001B ASL *0001*001E 0000 O! 00 000000 OOFO 0000081
«001E ROL *0000*0021 0000 01 00 000Z0OO OOFO 0000087
#0021 LSR A*0021%0022 0000*00 00 000ZVC OOFO 0000089
%0022 BCC *0023*0024 0000 00 00 000ZVC OOFO 0000093
*0024 LDA B=*0004+0026 0000 00#*0S 00000C OOFO 0000096
*0026 ADD B*0001%0028 0000 00*19 000000 OOFO 0000099
*0028 STA B#*0004*002A 0000 00 19 000000 OOFO 0000103
HH IA ocC EA P X A B [} S T
*002A LDA B#*0003#002C 0000 00*=00 000Z0OO OOFO 0000106
*002C ADC B*0000%002E 0000 00 00 000700 OOFO 0000109
*002E STA Bx0003*0030 0000 00 00 000Z0OO OOFO 0000113
#0030 TST A=*0030*0031 0000 00 00 000Z0OO OOFO 0000115
*0031 BNE »#(0032«0033 0000 00 00 000ZOO OOFO 0000119
#0033 RTS *00F2+«0000 0000 00 00 0O00ZOO*0O0F2 0000184

INST FAULT
*0000 =***x *0000%0001 0000 00 00 000Z0OO OOF2 0000126
?RES

ANSWER IS CORRECT [9, =25, TR1191

0000 00 14 05

188

Example Programs and Systems

RUN NBI = AA, = 170,
760 OAA,0AA NBZ = AAg = (70,0
4 - 0,0 = 70E
INST FAULT /7010 ,70,0 20’0 10 4/6

0000 #+* B 0000 0001 0000 00*70 HOOZOO OOF2 0000280
DL

*0033 RTS »00F2#0000 0000 00 70 HOOZOO OOF2 0000278
TRES

./l/ RESULT
oooo f 00 AA Ueooe

INsT FauLt Fre X %16= Fo X ¥ = /‘/o’ 10,¢
*0000 **» *0000*0001 0000 00=+00 000Z0OO0 OOF2 0000104 -

DISPLAY LAST INSTRUCTION
HH IA OC EA P X A B c 3 T

*0033 RTS *00F2+*0000 0000 00 00 000Z00 OOF2 0000102
?RES

0000 00 10 04 00 RESULr
760 QA 08D

0A» 0A

insT FauLt Ao X Ay = 10,0 X 10,5 = 100,, = 64,

#0000 **+ *x0000%0001 0000 00 00 000Z0O OOF2 0000148
DL

#0033 RTS *00F2%0000 0000 00 00 000Z0O OOF2 0000146
7RES

RESLULT
oooo " 50 _0A oo.ﬁ./

Fio X FFie =255, X 255,5= 65025,
MEMORY FAULT AT B8OFF

ol
#0000 CLR #*80FF*0003 0000 OO*FE HO0Z0O OOF2 0000372 /6
DL

#0033 RTS #0O0F2#0000 0000 00 FE HO0ZO0O o
2RES

RESULT THIS IS THE WORST CASE
0000 7F 80 FF(FE 01)eee--

7EX TIME REQD. TO MULTIPLY
WITH THE LARGEST 8 BIT
PROGRAM STOP AT O NUMBER . TIME INCLUDES

THE RTS INSTRUCT/OM.

189

EX-17

TR1146

EX—18 Example Programs and Systems

PRGE

00001
00002
00003
00004

00005
00007
00008
00009
00010
00011

00013
00014
00015
00016
00017

00019

00021
00022
0no23
00024
00025
000e6
00027
nonzs

N0031
nno42
DDE 3¢
HDNERE]
noongs
[T
MFEYRE
MESY S

(RIS |

MOARDD

TAOTAL

001

2000

2000
2001
2002
2003
2004
2005
2006
cocs3
200R
zooc
200E
c010

2012
c014
anln

2013

201R
2U1B
201t
201D

caun
]
SONE
2018

EFFPOPS 00000

MPY1

EE
RY
3¢
e

31
31
21
39

02
0t
on
FO

HAM MPY1

*REV0 2-25-76 BRINTER

oPT M, 0T S»NOP

ORG $2000

oTHIS IS A REENTRANT 8 BIT BY 8 BIT
SUNSIGNED BIMARY MULTIPLY SUBRPOUTINE.
®ACCA=MULTIPLICAND, RCCB=MULTIFLIER
*THEN CALL MPYRE SUBROUTINE. THE
*PRODUCT MSBYTE WILL BE IM ACCA AND
oTHE LSBYTE WILL BE RETUPHED IN RCCB.

* o000

¢ START OF SUBROUTINE

MPYRE PSH
DEG
PSH B

TSX
CLR A
B
A

b o)

CLR
STR
BRA MPY1
MPY2 ATL 2y X
ROL 19X
MPY1 L3R 0s X
BCC NOARDD

ADD B &»X
ADC R 1+%
TST el
NMOARDD ENE MPYe

*CLERM UF STRCK EEFORE
INS
INS
INS
®TC
MaN

190

0sX MULTIPLIER

1»X MULTIPLICAND SHIFT STORE
2»X MULTIPLICAHD

3sX MSBYTE PETUPN ADDRESS
4,X LSBYTE PETURNE RDDPESS

0006000000000 000

MULTIPLICAND ON STACK
MULTIPLICANMD ZHIFT 3TOPE
MULTIPLIEF OM STACK

SP TO IMDEX REG.

CLR MULTIPLICAND STORE
SHIFT MULT-CAND LEFT

SHIFT MULT-CANMD STORE LEFT
SHIFT MULTIPLIER RIGHT

TEZT MULTIPLIER FOR ZERO
FIMIZHED 777727

PETUFPNING FFROM SUEROUTINE

RETURN TO CALLING FOUTINE

Example Programs and Systems EX—19

SAMPLE SYSTEM PROBLEM — BCD to LED (Table Look-Up)

As an example of a system problem, assume a system composed of a 7-segment
LED and a 4-wire BCD signal. The object will be to use an M6800 to convert the BCD
signal to the 7-segment code necessary to the LED.

Even though the same task could be done with one TTL IC (7447), this
problem illustrates not only a very simple complete system, but more important
it demonstrates one method of using a look-up table without getting entangled with
more complex concepts.

TRUTH TABLE OUTPUT
WORD
F/ /B BOD CODE SEVEN-SEGMENT CODE DISPLAY | (HEX)
G
'—'"/ d ¢ b a|A B C D E F G
E/ c .
00 0 0/l0 0 0 0 0 0 1 . 01
000 0 101 0 0o 1 1 1 1 4F
0 0 1 0 0 0 1 0 0 1 0 - 12
0 0 1 1{0 0 0 0 1 1 o0 = 06
L oYe XF¥G 0 1 0 0 1 0 0 1 1 0 0 _i ac
[T T 1 11 01 0 110 1 0 0 1 0 o0 o 24
F T T T T 9 01 1 01 1 0 0 0 G O ~ 60
"C D E F G .
o1 1 1]l0 0o 0o 1 1 1 1 i OF
1 0 o 0|0 G 0 0O O 0 O = 00
1 0 0 1{0 0 0 1 1 0 0 = oc
INVALIDCODE | 0 1 1 0 e 0 o - 30
211
M6800
SYSTEM p————P A
" — &
FROM b »C’ T0
EXTERNAL { > ____;‘E), { LED
WORLD —> =
d > »
———» G
TR1134

191

EX—20 Example Programs and Systems

SYSTEM CONFIGURATION

ol
POWER > +5 voC >
cLocK
SUPPLY 52
—>ano |
+5 V
r
+5V l [1'
| RESVce Vs
AQ
RES Vce Vss) Al RSO pagle—MS
o1 p —Rs1 PA2 BCD
'—2—) o1 1RQ cso PA1 INPUT
o A12 =55
— 92 G/H A”: CS2 PAO[K s
NMI vMA cs1
F TSC = —
:1123__'5-2 A13—]cs g
— A12—Cs © R/W < re
A11— o A1 és @ — 5 PBE D — A
=] AO——ES %S °<°§) B p55.—(>_~v.——B'
2 cs gg A10 —CS 02 92l O PBA[~D—an—dAC
5} ¢ :CS o= == ca1 = PB3—b—w—D’
= +5V =- g CA2 PB2 |—D———— E’
D ——] F
A6 —N 6 A9 — A9 cB1 PB1 F
: : CcB2 PBO D> —G
AO-ATS &—{ R/W DO0-D7 AO A0 A0
D0 — D0 - D7 A0 Do — D7 DO — D7 LED
+5V
PIA ADDRESSES 0C00 — PIATAD
0C01 - PIATAC
0C02 — PIA1BD
0C03 — PIATBC
ROM ADDRESSES ~ 3C00 — 3FFF
RAM ADDRESSES 0000 — 007F
TR11353

192

Example Programs and Systems EX-21

SOURCE LISTING

LIST

BCDLED 203 29EST 11710775
100 NAM BCDLED

110 OPT ™

115 SPC 1

120 ORG O

130 INDEX RMB 2

140 ORG $0C00 PIA ADDRESSES

150 PIALIAD RMB 1

160 PIAIAC RME |

170 PIAIBD RMD 1

180 PIAIBC RMP |

190 ORG $3F00 BUILD TABLE

200 TABLE FCP $1,$4F,$12,%6,%4C,$24,%$60,$F,,3C
210 FCB $30,$30,$30,3%30,$30,%$30 ERROR INPUTS
220 ORG $3FFE

230 FDPR START RESTART VECTOR

235 SPC 1

240 ORG $3C00 BPEGIN FROGRAM

250 START LDA A #SFF

260 STA A PIAIBD B-SIDE ALL OUTPUTS

270 LDA A #200000100

280 STA A PIAlAC

290 STA A PIAIBC

300 LDX @#TABLE GET STARTING ADR OF TABLE
310 STX INDEX

320 LOOP LDA A PIA1AD READ BCD INPUT

330 AND A ¢300001111 MASK 4 MSB

340 STA A INDEX+1}

350 LDX INDEX

360 LDA A 0,X

370 STA A PIAIBD OUTPUT TO LED
380 BRA LOOP DO IT AGAIN

390 MON

READY

TR1194

193

EX—22 Example Programs and Systems

ASSEMBLY LISTING

ENTER SI FILENAME
?BCDLED

ENTER MF FILENAME
TLEDSIM:IC

FILE'S LABEL1

MF FOR SIMULATION OF BCDLED PROGRAM

INPU

PAGE | BCDLED 11/10/75 20:30.00
00100 NAM BCDLED
00110 OPT ™
00120 0000 ORG 0
00130 0000 0002 INDEX RMB 2
00140 0COO ORG $0C00 PIA ADDRESSES
00150 0COO0 0001 PIA1AD RMB 1
00160 0CO! 0001 PIA1AC RMB 1
00170 oC02 0001 PIALIBD RMB 1
00180 0CO3 0001 PIAIRC RMB 1
00190 3FO00 ORG $3F00 BUILD TABLE
00200 3F00 O1 TABLE FCB $1,84F,%812,%6,34C,$24,360,8F,,$C
3F01 4F
3F02 12
3F03 06
3F04 4C
3F0S 24
3F06 60
3F07 OF
3F08 00
3F09 OC
00210 3FO0A 30 FCB $30,$30,$30,%30,%$30, %30 ERROR
3FOB 30
3FOC 30
3FOD 30
3FOE 30
3FOF 30
00220 3FFE ORG $3FFE
00230 3FFE 3CO00 FDP START RESTART VECTOR
00240 3C00 ORG $3C00 BEGIN PROGRAM
00250 3C00 86 FF START LDA A #SFF
00260 3C02 B7 0Co02 STA A PIALIBD B-SIDE ALL OUTPUTS
00270 3CO0S5 86 04 LDA A #%20000010C0
00280 3C07 B7 0CO! STA A PIAIAC
00290 3COA B7 0CO3 STA A PIAIBC
00300 3COD CE 3F0O0 LDX #TABLE GET STARTING ADR OF TABLE
00310 3C10 DF 00 STX INDEX
00320 3C12 B6 0COO LOOP LDA A PIlAlAD READ BCD INPUT
00330 3C15 84 OF AND A #3200001111 MASK 4 MSB
00340 3C17 97 01 STA A INDEX+!
00350 3C19 DE 00 LDX INDEX
00360 3C1B A6 00 LDA A 0,X
00370 3C1D B7 0CO2 STA A PIALIBD OUTPUT TO LED
00380 3C20 20 FO BRA LooP DO IT AGAIN
00390 MON

TR1183

194

Example Programs and Systems

SIMULATION

RUN MPSSIM

MPSSIM 201 35EST 11710775

MOTOROLA SPD, INC. OWNS AND IS RESPONSIBLE FOR MPSSIM
COPYRIGHT 1973 & 1974 PY MOTOROLA INC

MOTOROLA MPU SIMULATOR, RELEASE 1.3

ENTER MF FILFNAME
LEDSIM:C

FILE'S LABEL:

MF FOR SIMULATION OF BCDLED PROGRAM

HH IaA ocC EA P X A B - C S T
0000 **x 0000 G000 0000 0G 00 000000 0000 0000000
mL

MACRO LIBRARY LISTING
TRA (SR P3C00,S007F,T0.SM0OCO00, ¢1.RP3C20.T20)
RUN (SR P3C00,SOO7F,T0sSM0C00,#1.RP3C20.R201]
RES (DM0OCO02)

1124 REMAINING CHARACTERS
?2TRA O

*3C00 LDA A*3CO01*3C02 OOO0O*FF OO0 OONOOO*0NO7F¢ 0000002
*3C02 STA A=*0C02+3C05 0000 FF 00 OONOOO O0O7F 0000007
*3C05 LDA A*3C06%3C07 0000*04 00 000000 007F 0000009
#3C07 STA As0CO1*3COA 0000 04 00 000000 007F 0000014
*3COA STA A*0C03*3COD 0000 04 OO0 000000 OO7F 0000019
*3COD LDX *3COF#*3C10*3F00 04 00 000000 OO07F 0000022
#3C10 STX «0001#3C12 3F00 04 00 000000 OO7F 0000027
#3C12 LDA A*0C00#*3C15 3F00*00 00 000Z00 007F 0000031
*3C15 AND A*3C16#3C17 3F00 00 00 000Z00 O07F 0000033
HH IA ocC EA P X A B C S T
*3C17 STA A*0001*3C19 3F00 00 00 000ZOO O07F 0000037
*3C19 LDX 0001*3C1B 3F00 00 00 000000 0C7# 0000041
*«3C1B LDA A*3F00#3C1D 3F00%01 00 000000 OO7F 0000046
«3C1D STA A(0C02+3C20 3F00 O! 00 000000 OO07F 0000051
BKPT AT 3C20

*«3C20 BPRA =3C21%3C12 3F00 01 00 000000 OO7F 0000055
7RES

oco2 01 .

195

EX-23

TR1192

EX—24 Example Programs and Systems

7SM0C00,33
7T20

*3C12 LDA A*0C00*3C15 3F07+33 00 000000 OO07F 0000059
HH IA ocC EA P X A B [S T
#3C15 AND A*3C16%3C17 3F07#03 00 000000 OO7F 0000061
#3C17 STA A*0001#3C19 3F07 03 00 000000 OO07F 0000065
*3C19 LDX 0001+3C1B#*3F03 03 00 000000 OO7F 0000069
*3C1P LDA A*3F03*3C1D 3F03#06 00 000000 OO7F 0000074
*3C1D STA A*0C02#3C20 3F03 06 00 000000 OO7F 0000079
BKPT AT 3C20

*3C20 BRA #3C2{%3C12 3F03 06 00 000000 OO7F 0000083
7SM0C00, 7B.T20

*3C12 LDA A*0C00#3C15 3F03*7B 00 000000 OO07F 0000087
*3C15 AND A*3C16#3C17 3F03#0B 00 000000 OO7F 0000089
*3C17 STA A*0001+3C19 3F03 0B 00 000000 007F 0000093
*3C19 LDX 0001+3C1B*3FOB OB 00 000000 O07F 0000097
HH IA ocC EA P X A B Cc S T
*3C1B LDA A*3FOB#3C1D 3FOB*30 00 000000 OO7F 0000102
*3C1D STA A*0C02+3C20 3FOB 30 00 000000 O007F 0000107
BKPT AT 3C20

*3C20 BRA #3C2123C12 3F0OB 30 00 000000 OO7F 0000111
?RES

0Co2 30 0
7RUN 9

BKPT AT 3C20
3C20 BRA 3C21 3C12#3F09#0C 00 000000 OO07F 0000055
?RES

oco2 oC .
7RUN S

BKPT AT 3C20
3C20 BRA 3C21 3C12#3F05*24 00 000000 007F 0000055
?RES

0C02 24 s
TRUN 2E

BKPT AT 3C20

3C20 BRA 3C21 3C12#3FOE+30 00 000000 OO7F 0000055
7RES

0C02 30 O

7RSS« EX

PROGRAM STOP AT O
TR1195

196

Example Programs and Systems EX—25

SAMPLE SYSTEM — Machine Control

The following system description is that of an MC6800 controlling a hypothetical
machine. This machine may be part of an industrial or commercial process and could
be involved in manufacturing such as photographic processing or other assembly-line
operations. While the application is imaginary, it does serve to illustrate how hardware
and software marry and that each has its proper place in any system architecture.
Although the system will function, its purpose is the illustration of techniques and
the intention to clarify the configuring of an entire system.

Function of System

The input from the machine to be controlled consists of eight switches, manual
and/or cam-operated that provide the input information to the electronics about the
machine’s condition. As these switches are mechanical, their output contains severe
bouncing which must be eliminated by some method. The driven items (controlled
outputs) are four incandescent lamps for operator indication or optical control
functions within the machine, and four AC motors driving various parts.

+5
/8 SWITCH INPUTS ,
o O/ MACHINE
MPU /& LIGHT DRIVES TO BE
SYSTEM — CONTROLLED
/4 MOTOR DRIVES
60 Hz
5V
AC
TR1199

The processor system examines the state of the eight inputs after performing a
software debounce, and calculates an appropriate output based on this information.
It then gives this output to the lamps and motors in a judicious fashion.

System Operation

A system schematic is shown in the following pages. The clock consists of a
cross-coupled monostable, MC8602 (see pages 4-10, application manual), with an
MC3459 driver and the restart circuit is an MC1455 (pages 4-43 of same). Interrupts
will be given to the system via CA1 and CB1 of the PIA from a one-shot, MC74121.
The Q output goes high, close to the zero crossing of the ac line and come low about
4 ms later, at the peak of the line cycle.

197

EX—26 Example Programs and Systems

The restart routine sets the stack pointer, initializes the PIA, clears out some
RAM locations, clears the interrupt mask, then falls into the executive code. The
executive code is a loop which runs continuously, looking at the eight inputs and com-
paring them to a look-up table. This table is composed of two-byte pairs. The first byte
of a pair is indicative of a certain input combination, and the second byte is the corres-
ponding output pattern that would be given to the lights and motors, if the first byte
should be a match with the actual inputs. The reader should notice that the executive
code takes its input word not from the PIA, but from RAM—at EXINP—and gives
its output not to the PIA, but to RAM—at EXOUT. Therefore, the executive code
does not handle the system tasks of |/O; these are taken care of in the interrupt routines.

Notice that CA1 and CB1 are tied together and are driven by the A output of
the one-shot. Line CA1 has been programmed to be sensitive to a rising edge and CB'1
a falling edge. Since the one-shot is driven by the ac line, we have indicators in terms
of interrupts corresponding to the zero-crossing (CA1) and peak (CB1) times of the
line cycle.

The system makes use of three interrupts. Valley, Peak, and NMI.

The Valley interrupt comes from CA1 and occurs near the zero-cross of the ac
line. The lights are turned on at this zero-current time, greatly increasing their life
and reducing inrush stress on the SCRs. This output data is taken from RAM location
EXOUT, the executive output. Valley has the second function of bringing in the
input information from PIAPA, conditioning (debouncing) it, and storing it at EXINP,
the input for the executive. Debouncing is performed by checking the inputs at 8 ms
intervals; and, if they are equal for three consecutive times, the data is stored in
EXINP, thus eliminating external hardware which would otherwise be required.

The Peak interrupt comes from CB1 and occurs near the peak of the line cycle.
This is the optimum time to turn off inductive loads, and the only function of this
interrupt is to output the four bits of motor data from EXOUT to PIAPB.

There is a third interrupt, NMI. Here it is used to indicate the impeding loss of
power. In order not to leave the motors and lights running uncontrolled because of
a power-supply or other failure, NMI turns off all outputs and goes into an infinite
loop with no escape.

If an oscilloscope were hung on the IRQ line, it would look like an inverted picket
fence timed to the line frequency.

R0

Q = CA1 = CB1

AC

TR1200

It is obvious that a processor such as the MC6800 is not fully utilized in this appli-
cation. It could perform several other functions in addition to controlling this machine,
or control many of them simultaneously.

198

EX-27

Example Programs and Systems

£ E0ZLHL
44€8-0008 S3ISSIHAQY WOY
4000-0000 S3ISSIHAAY WyH
90vid €8
8dvid 28 = c 10-00 'V1v@ ¢
vavid 18
vdvid 0800 S3SSIHAQV Vid 780 ov Krov o & ov
wo ! i
6v 6Y 9V - 9y
oVl WY [— Wy < = v
HOLOW v 0L 084 G+ mu& sIY
0EVEINIW otgomow 2
43S 191N 804! oui WO gyt gy wvy SI— 1y
v ol v0HI = 4] saf— &1y P—
B9 geom 3 [3 Sop—2¢ ndw
vid sy — LV SJ wy $9
SLNANI oSy = o |
; o
HaLims Ovd 283 [— SIv wH L
8 WOHd . 1S9 — LV wy ol —
Ve 082 VWA ISLI— ang
s34 T H/9 — g+
189 V) T
HW4X
A1ddNS HMd LI Lo 2 Lo
WOY4 oV ! 7 oy
"NYW ddv Agy =30 "NYW ddv ‘01— bd
,h_%nmw_“,_c ‘Cv-y bd 04 SHIIHD (/1) 6SYEIW
1dNYYILNI DYI SSYLOW "LINJYII IWN ‘Z098IW
; 14V1S3Y 1YNOILdO %2012
G+

NOILVHNIIINOD WILSAS

199

EX--28 Example Programs and Svstems

SOFTWARE FLOW

(FROM RESTART)

[INITIALIZE SYSTEM] 270-380

)

T

[EXAMINE “EXINP”] 420
|

430, 440
MATCH

WITH AN INPUT
BYTE IN LOOKUP
TABLE?

\

TAKE NEXT BYTE AS OUTPUT,
STORE AT “EXOUT”

510-540

GO TO NEXT INPUT BYTE

J 450-490

TR1201

200

Example Programs and Systems EX—29

INTERRUPT ROUTINES

IRQ

(ENTERED
EVERY 4 ms)

VALLEY

PEAK

NMI

f

TURN OFF

VALLEY ALL OUTPUTS
670-680 1080
PUT LIGHT DATA ONLY PUT MOTGR DATA ONLY GO INTO
720-770 FROM “EXOUT” FROM “EXOUT” INFINITE
TO PIAPB TO PIAPB Loop
| 980-1040 I 1090, 1100
L READ INPUTS, PIAPA J 790
RTI
STORE PIAPA
AT “EXINP”

I 920-940

RTI

NOTE: NUMBERS IN PARENTHESES ARE LINE NUMBERS OF SOURCE STATEMENTS

TR1202

201

EX—-30 Example Programs and Systems

PAGE 1

00100
00110
00120
00130
00140
00150
00150
00170
00130
00190
00200
00210
oo0z220
00230
o240
00250
00250
0270
oo2320
00230
0nz00
D0310
00320
00330
00340
00350
00350
00370
00330
00330
00400
00410
00420
00430
LhEE]
00450
00450
D E i
0430
00430
nason
oSty
N0S20
00530
00540
nussn
00550
00570
00530
00530
00500
00510
NOs20
00530

n0on
0000
0001
nno2
0003

0030
0030
o031
nQ32
0033

3000

3000
3003
3005
2003
2000

300F
3012
3014
3017

3013

301R
301D
301F
3021
anz3
3024

2029 3

3023
302R

3021
302E
3030
3031

3033
303F
3047

HYDER

0001
0001
nno1
0001

noo1
o001
0001
0001

3E 0Q0YF
7F o000
7F 0001
7F 0002
7F 100023

CE 0007
DF 30
ZE FFO0S
DF 32

aono
D311
4D:33

11703-75 11:21.00

MAM HYDER 10-30-7S REY 002
arT M=MF3s+ 3, 0=TRAPE . NO=
ari 000y
EXINP RMB 1 LABEL RAM LOCATIONS
COUNT RMB 1
EXDUT RMEB 1
TEMP RMR 1
*
arni 00320
PIARPA RMB 1 LABEL PIR LOCARTIONS
PIRCH FRMB 1
PIRPR RME 1
PIRCB PFMB 1
.

. ors F2000
POPOPPP00000000000000¢REIRIN PEZTHFT ROUTINE eceeece
.

REZTRT LDZ SBROOTF LOAD =ZTAZK POINTER
CLR EXINF
LR COUNT CLEAR OUT PAM
CLKE EXOUT
CLR TEMP

-
LD +F0007 ZET UP PIR
=TX PIAPA
LD« +BFFOS
ZT® FIAFR

*

LI
PP00000000000000000000000BRELIN EXECUTIVE ROUTINESe

*

3 EXEC LI #THRELE

CONTIN LDR A EXINP SET DRTHR FROM FAM
CMF A e Iz THERE A MATCHY
EED MATCH '
D et SEMDTREB+2 END OF THBLE®
EME CONTIN NOF CONTINUE
BRA EXEL YEZY BESIN AGAIN

.

MATCH LIDIA B 1% SET DRATAR TO OUTPUT
TR B EXOUT STORE IT IN RAM
WAT HOTHING ELZE TO DO
BRRA EXEL FETUURN TO EXEC LOOP

.
0000000000000 0000000000000000000000000000000000000
*TRABLE FOLLOWE: FORM I:: DATA BYTE FOLLOWED

*BY AN OUTPUT BYTE INDICATIVE OF THE OUTPUT EYTE
+TO BE SIVEN TO THE PIAPR

.

TABLE FDB BOOOOBOL02B02TT+B0331, 34201 BASSF
FDB FIZ1133B22 3FF 115 BFELCS

ENDTRE FDB FAD32 END OF TRBLE

202

Example Programs and Systems EX-—31

PR5E 2 HYDER 11-03-7S 11:21.00

0oedn .

assSo 0000000000000 IR) POLLING ROUTINEeosesssssssssscsse
anann .

NDATO 2043 35 33 POLL LDAR A PIACE 5ET B

10230 I04B 2R 27 BMI PERK YALLEY OF PERAK INTERRUPT?
00530 .

o7 oo 000000000 INTERRUPT FOR WRLLEY LIGHTZ % INPUTI e
007T10 .

00720 304D 35 FO YALLEY LDR R =3%F0

DO730 304F 34 02 AND A ExXDOUT DUTPUT 4 RIT: OF LIGHT
Q0740 3051 DS 32 LR B PIAPR DATA ONLY W-0 THANGING
0a7S0 3053 C4 0OF AND B =30F MOTOR OUTPUT:

No7e0 305% 1B ABA

0O770 3055 37 32 TR A PIAPER

00730 *

00730 3053 35 30 LDAR A PIAPAR INPUTI ZAME R:

003200 305/ 31 03 CMP AR TEMP LAZT TIME? CLERRS INTERRUPT
00310 20SC 27 05 RER ZAME

0g320 30SE 37 03 TR A TEMP STORE NEW DATR

00330 2050 FF 0001 ZLR COUNT ZEROD COUNTER

00340 3053 2R RTI 530 BACK TO EXEC

00350 .

00330 2054 Tn 01 ZAME LDA B =01 THIRD TIME MATIH7?

00370 30ma D1 01 ZMP B ZOUNT

00330 30n3 27 04 BER 500D IN IF 0. 0 7O =00DIN

00330 30sR 7C 0001 INC COUNT IF NOT. JMJIZT INC COUNTER
00300 230”D 3B RTI AND RETURN

00310 .

00320 303E 37 00 300DIN TR A EXINP PUT 3000 DATA IN RAM

00330 3070 7F 0001 CLR COUNT

00340 3073 3B RTI

00350 .

00350 s000000000eINTERRUPT FOR FERK MOTOR» OLTPUTSeeess
00370 .

00330 3074 35 0OF PERK LDAR A #30F OuUTPUT 4 RIT: OF

00330 23075 34 02 AND A EXOUT MOTOR DATR o3 CHANGING
01000 3073 D 32 LDR B PIRPR LIGHT DRTR. Wi 30 CLEARS INT
01010 307R 4 FO AND B #3F0

01020 307C 1B ABA

01030 307D 37 32 ITA A FIARPE

01040 307F 3B RTI

01050 .

01050 A add o0 oOFTIONAL NMI INTERRLPTeeessse
01070 .

01030 3030 7F 0032 NMI CLR PIRPR TURN OFF ALL OUTPUTS

01030 3033 01 HRANGLIP NOF -

01100 3034 20 FD BRA HANGUP 30 TO SLEEP

01110 .

01120 so00000e ®oeeSET VECTORS IN UPPER ROMeesessss
01130 .

01140 33F3 ari $33F3

01150 33F3 3043 FDB POLL» 0000sNMI» RESTRT

01160 .

01170 MON TR1208

EX—32 Example Programs and Systems

ACIA Memory Load/Dump Program EX—32

ACIA MEMORY LOAD/DUMP PROGRAM
Example

Assume three 128 x 8 MCM6810 RAMs in a system. It is desired to load a'256-
byte program into the two upper RAMs starting with address 0080.

Hand load: RAM Loc. Value
0000 00
0001 80
0000
0002 (o1
0003 1 80 007F
Starting Vector 0080
Stopping Vector
(Last Address +1) 00FF
0100
017F

After the hand-loading of the starting and stopping vectors, the load program is
executed by starting the MPU at program address 0900. When the program has finished
loading, the CA2 line of PIA1 will go low. This signal can be used to stop the tape
recorder or turn off a lamp to indicate the end of the loading process.

The memory dump program works as follows: The start-and-stop memory dump
addresses or vectors are hand-loaded into RAM locations 0000, 0001, 0002, and 0003
in the same manner as in the previous load program. Program exeuction begins at
memory address 094B. The characters AA and 55 are first dumped or placed on the
tape in order to indicate the beginning of memory dump or listing. Each program
character or byte is dumped via the ACIA and Modem until the last memory location
has been addressed and dumped. When the dump operation is complete, the CA2
lead of PIA1 will go low, indicating dump complete.

204

Load via ACIA (MC6850)

Example Programs and Systems EX-—33

START ADDRESS 0900

BEGINNING OF
TAPE CHARACTERS

LOOK FOR

AA AND 55

NO

AA
RECEIVED

55

RECEIVED

STORE CHARACTER
IN NEXT

LAST RAM
LOCATION
LOADED

YES

RAM LOCATION

LOOK FOR
NEXT CHARACTER

vEs Anon

SET CA2
OF PIA =1
LOW

FREE

NO

LIGHT ERROR
LAMP

STORE ERROR
LOCATION IN
RAM LOCATION
0004 AND 0005

205

EX—-34 Example Programs and Systems

Dump via ACIA (MC6850)

< START » ADDRESS 0948

ouTPUT
CHARACTERS
AA AND 55

ouTPUT
NEXT PROGRAM
CHARACTER
(BYTE)

2
(=]

LAST
BYTE SENT

206

SET CA2 OF
PIA £1 LOW

Example Programs and Systems EX-—35

Source Program for Load/Dump via ACIA Program

1.000 HAM LDEDOT

c.oo0n OFPT M

Z.000 « THIS PROGRAM LOARDS OR DUMPE MEMORY

4. 080 « PLACE =TART ADDRESS IN LOC 00 2 01

S.000 e FLARCE END RDIRE + 1 IM LOC D2 & 03

S.000 « IF ERROFR OCCURS, CHECK LOC 04 & 05 FOR ARDDREZE.
FT.O000 & CAZ STOPS DRIVE AT EOT OFR ERROR.

=.000 « CE2 SIVES ERROR INDICATION.

Q.000 « DUMF PROGRAM STARTS AT LOC 034E.

10,000 PIALAC EQU FI
11.000 FPIALEC EGU
1e.000 ACIARD E2U 3
1Z.000 ARZCIAD EQU E0
14,000 0ORG 0300
S.000 LDA AR #3032
16,000 =TA A ACIAC ACIA MAETER RESET
T.O000 LD 300 LOARD ZTART HDDRES
S.000 LDA A #%19 ACIA = BITE EVYEN PRRITY
S.000 ETH A HCIARC

1
20,000 LOOF LDA A ACIAC
cl.o000 ROR A
Zz.000 ECC LOOF RECEIYER FULLY
2. 000 LIIH A RCIARD
4. 000 CMPARA .CMP A #%AA IZ FIRET CHAR "HA"T
Z5.000 EME LDOP ERAMCH IF MOT
cEe. 000 LOOP1 LDR A RACIAC
c oon FOF H
cE. 000 BCC LOOFR1
Z2.000 LDA A ACIAD
= CMF A #%55 1= ZECOMD CHARR "S5"7
EME CMPAA IF NOT. TRY FOR AM "HA"
LOOFZ LDA A ACIAC
TRAE TRAMZFER A TO E
AMD B #EF0
1 EME ERRDR BRANCH IF ERROR
oo ROR A
non BCC LOOPES
.000 LDA A ACIAD LOARD A CHAR FROM THPE
oo0 =ETA A Nax ZTORE IN MEMORY
oon IM< IMCEEMENT ADDREEE
LOo00 CPRe %02 LOARD COMPLETEDT
noo BME LOOFPZ =0 GET MORE
oon EMD LDA A #%30
o000 =TH A PIALAC TURMN OFF CAZ
oo EFR
S, 000 ERROR LDA A #%326
.non ETA A FIALEC TURM OM ERROR LIGHT
42,000 =T: ¥04 ZTORE ADR OF ERROR
43,000 ERA EMD
SO, 000 FHEE
S1.000 LI F00 +=ZTHRET OF DUMF FROGREAM

207

EX—36 Example Programs and Systems

Source Program for Load/Dump via ACIA Program (continued)

S2.000 LDA A #E19
S3.000 EZTR A ACIAC
S4,000 LDA A «¥AR «0JTPUT CONMTROL CHAR
S5.000 ZTA A ACIAD
SE. 000 LOOPS LDA A ACIAC
a7 ROR A
i ROR A
b ECC LOOPS +=MIT EBUFFER EMFTYT
= LIA A #%55 0OUTPUT ZECOMD COMTROL
ZTA A RCIARD
LOOFEe LA A RCIAC
FEOR A
ROR A

oon ECC LOOPE +<MIT EUFFER EMPTY?
000 LOOF4 LDA A Os
000 =TA A ACIAD OUTPUT CHAR TO TAFE

2,000 LOOP2 LDA A ACIAC

3,000 ROR A

Fo.000 ROR A

Fl.oo00 BCC LOOFPS *<MIT EUFFER EMFTYT

1
Z.000 INH
FILO000 0 CPXOB02
4.000 EME LOOP4
S.000 ERA EMD
Fe. 000 MOM

208

CHAR

Example Programs and Systems EX—37

Assembled Program for Load/Dump via ACIA Program

nooin

HIIII4II
IIIlIlC:II

Dol oD
nnLin
onLan
0010
ooLgn
no1so
noLen
ool o
oo1En

0000
ES]
nngzn
00320
INE]
oodsn
N
nn4,n

n41u

=D ey
0315
0317
0319

E
i
E
E
4
E
E
os1c 4
E
E
1
[
3
E
A
i
=1

T T B T

T =) 151-'. m =J

|_'T-'. ;-- l]-'. J.. 1T

[

[ng)

[LE S)

BT I RN s S OSN3

'.< H S.
CEZ
TLmMP
FIALRLC

LR 2K 28 2R 2N 4

+

HCIAC
RZIAD

ne LOOF

A
A CHMPAA

--_:‘ T] I = m

LOOF1

L)
EF
nE0s LOORE

EMD

EFFROF

THI=
FLACE
FLAZE EMD
IF ERFOR OCCURZS
=TOFE
SIVEZ ERFOR IMDICATIOM.

FIAR1EC

HMAM LDEOOT
aFT M
FRO>FRAM LOARDE
ZTHRT RDLRE
RDDF

Or DUMFZ MEMORY
IM LOC o0 2 n1
+ 1 IM LOC 0z
CHECE LOC 04 & HS FOR ADDRE=Z.
DRIVYE AT EOT OF ERFOE.

FFUHPHM AT LOC 034E.
E@L
EC
Ei
EQ

Or 15

TARRT=

LA A

ETH A RACIAC RZIA MAZTER REZET

LI Foo LOARD =ZTART ADDREEE

LA A #E13 ACIA = BEITET EYEM PARITY
ZTH A ACIAC

LA A ACIAC

FOF A

BCC LOar RECEIVER FLILLY

LR A ACIARD

CMF A #ERA IT FIRET CHHRE "RAR"TY

EME Loar ERAMCH IF NOT

LOA A RCIAC

FOF A

BCC LOOF1

LDA A RACIARD

CMFE A R Sapal 1% ZECOMD CHAR "S5 7
EMHE CMPHHA IF HMOT. TREY FOR AM "AR"
LA A RCIAC

THE
AMD E
EME

TREAMZFER A TO E
L

ERFOFR ERAMCH IF ERROF

FOF A
BCC Logrz
LDH A ACIAD LORD A CHAR FFROM TAHFE
; A D ZTORE IN MEMORY
IMCEEMEMT RIDODREZE
Eoz LOAD COMFLETED?
LOOFz 50 SET MORE
A #F30
A FIALARC TUEM OFF CHZ
*
SIS 318
A FIALEC TURENM OM ERROR LIGHT

T 04
EMNDI

ZTORE ADE OF ERROR

209

EX—38 Example Programs and Systems

Assembled Program for Load/Dump via ACIA Program (continued)

nusio
QO0SE0 0a4n
0D0S30 034F

nosd4n 052

034E

=
m

[SRS Bn SN s 41

[4

N3k

N35C

S0 SRR B SRS (N

D OURS SSn SR SR SRR B L R

2 1T

Mmoo oM fo obdd Mo fo fo b 00 Mo fo o b bt 00 b 00
[ng

nnys0n 03vE

Ooven

= o
=

v T .
[]

- LOOFS

. LOOFe

LOOF4

5 LOOF

T T I

T ITII I

T I T I DI

210

E00
#5132
HZIALC
SEAA
HZIARD
RIZIALC

LOaOrsS
LS5

ACIAD
RZIRAC

LOOF =

0z
LOOP 4
EMD

+ZTRRET OF DUMF FROGREAM

OUTFUT

CONTROL CHAR

«<MIT EBUFFER EMFTY?

SOUTFUT

ZECOMD COMTROL CHAR

+<MIT ELFFER EMPTYTY

OUTFUT

CHAR TO THFE

“#xMIT EUFFER EMPTY?Y

System Configuration

System Configuration SYS—1

SYSTEM CONFIGURATION

Perhaps the strongest points of the M6800 system is the extreme ease of use and
connection given to the user and the almost complete lack of external parts needed for
operation. This section is intended as an aid to connecting the various lines in order
to have a complete operating M6800 system. In general, three sets of lines need to be
connected: the data bus, the address bus, and the control bus. It is assumed that when
this step in the design cycle is reached, the parts required for the particular system
are known. An exampie foiiows this section.

DATA BUS

The data bus connection is trivial; the eight bus lines D@ through D7 simply
connect to those pins on every package marked D@ through D7.

ADDRESS BUS

The sole purpose of, the address bus wiring is to give each memory location in
every part its own'un/que address. This is accomplished by connecting the various chip
selects on each part to the address bus in order to select that part from the others,
and then wiring the lower order address lines to select a particular location within
each part. This can be thought of as selecting an individual page, and then selecting
one word on that page, thus accessing only one word in the whole book!

Usually RAM is located in lowest memory to take advantage of the direct
memory addressing mode. ROM is in high memory because we must access the eight
highest memory locations in order to have the four fixed vectors (IRQ, SWI, NMI,
RESTART) available to the MPU. PIAs and ACIAs are usually located in middle
memory.

The ruies for accompiishing this task are as foiiows.
1. Connect the lower address lines that will enable a particular location within

each part. These are RS® and RS1 for PIAs, Rs for ACIAs, AQ through A6 for RAMs,
and AQ through A9 for ROMs.

2. Configure the address lines to the various chip selects to select a particular
part. This is done by:

a. Connecting address lines to select a device type; that is when ROM is
addressed, RAM, PIA, and ACIA are disabled; when RAM is addressed, ROM, PIA, and
ACIA are disabled; when PIA/ACIA is address, ROM and RAM are disabled.

b. Next, use other address lines to select one part within each type; one
ROM out of all the ROMs, one RAM out of all RAMs, etc.

If we now check that each part has its own unique addresses, and the MPU can
access the four vectors in upper ROM, then the addressing task is complete.

To recap what has been done: We used upper address lines to select a device type;
other lines selected one individual part in that type; and lastly the lower address lines
picked out one memory location within that part. Unused chip selects simply tie to
the apprepriate level, +5 V or ground.

213

SYS—2 System Configuration

CONTROL BUS

_The control lines are necessary for timing and control of the system. These lines
are IRQ, RES, ¢2, R/W, and VMA.

The IRQ lines from ACIA or PIA may be tied together (wire-OR‘ed) and run to
either IRQ or NMI on the processor. They should be pulled up to +5 V through a
single 3-10 k resistor at the MPU for optimum results.

The RES signal is applied by external circuitry to the MPU and should also be
connected to the PIA RES pin. .

¢2 is used as a sync signal to any part in the system that acts as RAM, that is, the
MPU can write into it. It should be wired to the E pin of the PIA, ACIA and a chip
select of the RAM. This ¢2 signal need not be the same ¢2 that goes to the MPU, for
this is a non-TTL-compatible clock signal. Rather, a TTL-type ¢2 should be bussed
around the system.

The R/W line simply connects to the R/W pin on the RAM, PIA, and ACIA. In
some cases, it may be pulled up to +5 V through a 3-10 k resistor, as discussed later.
VMA is a signal that, when high, indicates a valid address is being applied to the
bus by the MPU. There are two general times when the address on the bus is invalid.

1. During some internal operations, the MPU allows invalid addresses to appear
on the bus, although they are unused.

2. Anytime the bus is three-stated, it is floating and therefore invalid.

We need to be sure that VMA is used to prevent destruction of data in our system
by writing into a location wrongly, or in the case of a PIA or ACIA, by reading
a register and accidentally erasing some pending interrupt flags.

During condition 1, above, the MPU hold R/W in the read state so that nothing
can be written. We have only to protect the PIAs and ACIAs against flag erasure by
connecting VMA ANDed with an address line to a chip select as will be shown in
the following example.

During the three-state modes (HALT, WAI, etc.) VMA goes low and we have to
make sure that nothing gets written into a memory location by accident. This can be
done with a pullup resistor on R/W to insure a read state, or in some systems VMA
may be connected to a chip select on the RAMs, if available. Either way, protection
is adequate.

NOTE: VMA may be connected to ROM if desired. This is not
absolutely necessary as data in ROM cannot be destroyed,
but no harm will come in doing so.

Other special connections for systems involving DMA or dynamic memory cycle-
stealing refresh are discussed in the M6800 applications manual, section 4.

214

System Configuration SYS—3

BUS BUFFERING

The M6800 system is guaranteed to run worst case at a maximum clock rate of
two megahertz with ten family devices on the busses. If more loading than this is
necessary, then bus buffers are required. Section 4-19 of the Applications Manual.

Other miscellaneous lines may need to be connected depending on the system
complexity. These include TSC, HALT, and BA. Often these are simply tied to logic
levels, but their further use is discussed in the applications manual, section 4. DBE is
normally tied to ¢2, which is the pin adjacent to it on the MPU package.

MEMORY EXPANSION

Occasionally the user needs larger amounts of RAM than the MCM6810. In these
cases, expansion is extremely simple. |f the user needs 1K x 8, for example, probably
the cheapest way is to use eight 1K x 1 RAMs in parallel. In this case, A@ through A9
are common to all eight packages, and their enable is shown below. 4K x 8 of RAM is
identical except that lines AQ through A11 are used.

A15
,}D‘ EREER

K X1
A9 Cs | BEACHIK X1 _| cs
1 » RAMS
]
‘———-ﬂ $0000—$03FF
A0
4 4
DO— e — — D7

The student should notice that a great many M6800 system parts may be
attached to busses with no external address decoding whatsoever. The only external gate
required other than clocks is that for VMA-Ayy to the PIAs. With only standard parts,
large amounts of 1/0 and memory are available to the user. The great ease of con-
figuring an M6800 system is shown in the following example.

SYS—4 System Configuration

System Configuration Example
Suppose our problem is to configure a system that contains:

3 RAMs
3 ROMs
3 PlAs
1 ACIA

Using the system layout sheet, we list the devices in the left-hand column. Next,
we put an ‘X’ on each address line connection for each part, i.e., A@ through A6 for
RAMs, AQ through A9 for ROMs; A@, A1 to RS@, RS1 for PIA; and, AD to RS for'the
ACIA. See Figure 2.

We must now select a device type to the exclusion of the others. Remembering
that ROM must be in high memory, we place a CS on A15. Then a CS for RAMs, PiAs,
and ACIAs isolates the ROM device type. Now whenever A15 is high, only ROM is
accessed. See Figure 3.

NOTE: PIlAs and ACIAs are considered to be the same device type as
they have the same chip select configuration and are there-
fore treated alike in addressing.

To separate RAM from PIA/ACIA, we use A14 as shown in Figure 4. It can now
be seen that with a combination of A15 and A14, each device type can be called out
while excluding the others.

Now, with each device type selected, we may select one individual part within
each type. Starting with the RAMs, we see that we will need two address lines to
distinguish among the three. Using A7 and A8 as shown in Figure 5, we can now
select one and only one RAM with A7, A8, A14, and A15.

The same thing can be done with ROMs in Figure 6. Starting with all CS (no CS)
on ROM#3, we work backward through the binary sequence on A10 and A11.

Now the PlAs and the ACIA have only one CS left for use. The standard most
often employed is shown in Figure 7.

We may now check that each device has its own unique address assignments by
determining the location of each part as done in the right-hand columns of Figure 7.
These numbers will be used in the software to address each part. (Unused address lines
are assumed low, @.) We can see that some devices have several addresses that can be
called to enable them. This is no problem, since we have control over those addresses
called by our program and we choose to use the unique ones. For example, address
$401C will enable all three PIAs, but we choose to use $4004, $4008, and $4010.

The last thing to check is that the MPU can get at the interrupt and restart
vectors. We apply $FFF8 through $FFFF to our address map and notice that.the
upper eight locations in ROM#3 are enabled. This is true even though we are using
addresses $8C00 through $8FFF to denote this ROM. Here is an example of non-
fully-decoded addressing, i.e., address $8FFF, $9FFF, $AFFF through $FFFF all
appear to be the same. Using more chip selects to more fully decode this area would
eliminate this effect if we needed to, but our system does not.

216

System Configuration SYS—5

The control lines are connected as shown in Figure 8. Notice that R/W is pulled
up to +5 V. The pullup resistor could be eliminated in this system by applying VMA
to a CS on each RAM, although either approach is acceptable to avoid alteration
of data.

Notice our system has two unused address lines, A12 and A13. These do not have
to be bussed all over our system. Figure 9 shows the same system with three
unused address lines. The system is identical except that some of the parts are at
different unique addresses.

SYSTEM CONNECT

MUST CONNECT

1. DATABUS
2. INTERNAL ADDRESSES
3. ADDRESSES TO ENABLE EACH PART
A. GIVE EACH PART ITS OWN UNIQUE ADDRESSES
B. MAKE SURE ALL UPPER-ROM VECTORS ARE AVAILABLE

ACCOMPLISH THIS BY USING TWO GROUPS OF ADDRESS
LINES TO ENABLES (OR CS):

i USE ONE GROUP TO SELECT A DEVICE TYPE, |.E.,
RAMS, ROMS, PIA/ACIA

ii. USE SECOND GROUP TO SELECT OUT ONE INDIVIDUAL
PART IN EACH TYPE

4. CONTROL BUS

(¢2, VMA R/W)
052 AD RAM: 8016 BYTES OF MEMORY EACH. 2 CS, 4 CS, ONE CS
es3 ADD. MUST BE TIED TO (2. USUALLY LOCATED IN LOWER
LS RAM legs MEMORY.
cs4
— S0
S5 ——— 37
250 Al ROM: 40015 BYTES OF MEMORY EACH. 4 CS, CUSTOMER
DEFINES WHICH CS AND CS. USUALLY LOCATED IN UPPER
cs1
ADD. MEMORY.
cs2 Rom LINES
cs3 AY
SO AD PIA: 4 BYTES OF MEMORY EACH. 2 CS, 1 CS. ENABLE (SYNC)
TIED TO ¢2. USUALLY RSO TIED ADD. LINE AQ, RS1to A1.
*CSo PIA RS1a= A1 USUALLY LOCATED IN MIDDLE MEMORY.
cs1
cs2 E
L (syne) 92
as AD ACIA: 2 BYTES OF MEMORY EACH. 2 CS, 1 CS. ENABLE
*CS0 (SYNC) TIE TO ¢2. USUALLY RS TIED TO AO. USUALLY
cs1 ACIA LOCATED IN MIDDLE MEMORY.
cs2
E TR1150
L (synp) 92

*CHIP SELECTS

217

SYS—6 System Configuration

Figure 2 — SYSTEM LAYOUT WORK SHEET

MPU Address Lines (A@—A15) Address
Device | 15| 14| 13| 12| 11| 10| 9| 8| 7| 6| 5| 4] 3| 2| 1] 0 | From| To
RAM #1 x| x| x| x| x| x| x
RAM #2 x| x| x| x| x| x| x
RAM #3 x| x| x| x| x| x| x
ROM #1 x| x| x| x| x| x| x| x| x| x
ROM #2 x| x| x| x| x| x| x| x| x| x
ROM #3 x| x| x| x| x| x| x| x| x| x
PIA #1 RS1| RSO
PIA #2 RS1| RSO
PIA #3 RS1| RSO
ACIA #1 RS
Figure 3 — SYSTEM LAYOUT WORK SHEET
MPU Address Lines (A@—A15) Address
Device | 15141131211 {10| 9| 8| 7| 6] 5| 4| 3| 2| 1] 0 [From| To
RAM #1] CS x| x| x| x| x| x| x
RAM #2| CS x| x| x| x| x| x| x
RAM #3| CS X | x| x| x| x| x| x
ROM #1] CS X| x| x| x| x| x| x| x| x| x
ROM #2| CS X| x| x| x| x| x| x| x| x| x
ROM #3| CS x| x| x| x| x| x| x| x| x| x
PIA#1 | CS RS1|RSO
PIA#2 | CS RS1|RSO
PIA#3 | CS RS1|RSO
ACIA #1| CS RS
Figure 4 — SYSTEM LAYOUT WORK SHEET
MPU Address Lines (A@—A15) Address
Device | 15|14 [13|12 |11 |10 9| 8| 7| 6 [5] 4| 3| 2] 1] 0 |From| To
RAM #1| CS | CS X | x| x| x| x| x| x
RAM #2 | €S| CS X | x| x| x| x| x| x
RAM #3 | CS | CS X | x| x| x| x| x| X
ROM #1 | CS X x i x| x| x| x| x|x|x|x
ROM #2 | CS X| x| x| x| x| x| x|{x]|x]|x
ROM #3 | CS x| x| x| x| x| x| x|[x]x]x
PIA#1 | CcS|cCS RS1|RSO
PIA#2 | CS|CS RS1|RSO
PIA#3 | CS|cCS RS1|RSO
ACIA#1 | CS|cCS RS

218

System Configuration SYS—7

Figure 5 — SYSTEM LAYOUT WORK SHEET

MPU Address Lines (A@ —A15) Address
Device | 15|14 (13|12 11|10]|9| 8| 7|6 | 5| 4| 3| 2| 1] 0 |From| To
RAM #1]| cs|Cs csles| x| x| x| x| x| x| X
RAM#2| CS|CS| csles| x| x| x| x| x| x|x
RAM #3| CS | CS csles| x| x| x| x| x| x| x
ROM #1| CS X x| x| x|x| x| x| x| x|x
ROM #2| cs x| x| x| x|x| x| x|x|x]|x
ROM #3| CS X | X[x| x| x| X| x| x| X]|X
PIA#1 | CS|cCs RS1|RSO
PIA#2 | CS|cs RS1|RSO
PIA#3 | CS|cs RS1|RSO
ACIA #1| cS|cs RS

Figure 6 — SYSTEM LAYOUT WORK SHEET

MPU Address Lines (A@ —A15) Address
Device | 15|14 |13 |12|11 |10 |9 |8 | 7|6 |5]| 4| 3| 2| 1|0 |From| To
RAM #1| CS | cCs csles x| x| x| x| x| x|x
RAM #2| CS [Cs CcSics X | X | X | x| x| x|X
RAM #3| CS | CS cs|cs x | x| x| x| x| x|x
ROM #1| CS csles x| x I xIx x| x| x| x| x|X
ROM #2| CS csfcs x| x| x| x| x| x| x| x| Xx]x
ROM #3| CS csles | x| x| x| x| x| x| x| x| x]x
PIA#1 | CS|cCs RS1|RSO
PIA#2 | CS|CS RS1|RSO
PIA#3 | CS|CS RS1|RSO
ACIA #1| CS | CS RS

Figure 7 — SYSTEM LAYOUT WORK SHEET

MPU Address Lines (A@—A15) Address
Device | 15 [14 [13[12]11|10|9 | 8|7 |6 |5] 43| 2] 1]0 |From| To
RAM #1| CS | CS cs|cs|x | x| x| x| x| x| X |oooo| o007F
RAM #2| CS | CS csles|x [x| x| x| x| x| x |o080]|00FF
RAM #3| CS | CS csles| x [x| x| x| x| x| x |otoo]|017F
ROM #1| CS csles x| x| x| x| x| x| x| x| x|x |sa00|87FF
ROM #2| CS cs|Cs | X | x| X |Xx|x]|x|x|x]| x| x |8s00]|8BFF
ROM #3| CS cs|es X | X | X | X |x|x|x|x]| x| x |scoo|8sFFF
PIA#1 | CS|cCS cs [RS1|RS0| 4004 | 4007
PIA#2 | CS|cCS cs RS1|RSO| 4008 | 4008
PIA#3 | CS | cCs cs RS1[RS0| 4010 | 4013
ACIA #1 | CS | cs cs RS | 4020 | 4021

Unused inputs tied to ground or to +5 V, as necessary.

219

SYS—8 System Configuration

RAM PIA/ACIA ROM
$2 | CSO CSO—
—Cs1 cs1 —_—
cs2 cs2— Ccso—
— CS3 CS1}|}—
—{Csa CS2 —
1685 cs3|—
— $2—— E (SYNC)
—/ R/W R/W
+5
310 k ADDRESS LINE 14 (11)
I
VMA
R/W NO CONTROL
SIGNALS TO
ROM, ONLY
ADDRESS
LINES
System 2 MPU Address Lines (A@—A15) Address
Device 15|14 13] 12]11|10] 9] 8| 7 |6| 5| 4| 3]2]|1]0]|From]| To
RAM #1 | CS0, CS3,+5 V Cs5|Cs4| cs2lesiy x| x| x| x| x| x| x |oooo Joo7F
RAM #2 | cs3, +5 V; CS4, gnd css|cs2 csilesof x | x| x| x| x | x| x |ooso |ooFF
RAM #3 | cs3, +5 V;CS4, gnd Cs5|Cs2 csojcst| X | x| x| x| x| x| x |ot00|o17F
ROM #1 | cs1,cs2,+5 v csafcsof cs| x| x| x | x| x| x| x| x| x| x |1400 |17FF
ROM #2 | CSO, gnd; CS2, +5 V CS3JCS1 CS| X[X[X | X | X | X| X | X |X] X |1800 |18FF
ROM #3 | CS0, gnd; CS2, +5 V csafestfes| x| x| x | x| x| x| x| x| x| x|1coo|iFFF
PIA #1 Cs2]cst CS0|Rs1|RS0| 0804 |0807
PIA #2 cs2|cs1 Cso RS1|RS0| 0808 |080B
PIA #3 cs2|cs1 CS0 RS1|Rs0| 0810 |0813
ACIA #1 cs2|cs1 €S0 RS | 0820 |0821

220

System Configuration SYS—9

o1 [wous

el Y

S

A E

oL

:.T—

€l

145

Sl

301A30

ss3vaav

(SLY—0V) SANIT SS3HAAVY NdN

133HS XHOM LNOAYT WILSAS

221

SYS—10 System Configuration

Device

SYSTEM LAYOUT WORK SHEET SYS
MPU Address Lines (AQ—A15) Address
13|12§11|10|19 | 8] 7| 6|54 |3 (21| 0] From To

15|14

X = Variable

RAM
(7F EACH)
—<Cs A0
s 4
—Es A6
—& Cs
cs

A0

A6

ROM
(3FF EACH) PIA
RSO —A0
—_ A0 A0
: RS1 A1
- : cs1p—
— A9 —— A9 cs2 b—
w— E?i —
*CSOR CS
(CUSTOMER DEFINES) o1sas 1

222

	01836721 mot.tif
	01836722.tif
	01836723.tif
	01836724.tif
	01836725.tif
	01836726.tif
	01836727.tif
	01836728.tif
	01836729.tif
	01836730.tif
	01836731.tif
	01836732.tif
	01836733.tif
	01836734.tif
	01836735.tif
	01836736.tif
	01836737.tif
	01836738.tif
	01836739.tif
	01836740.tif
	01836741.tif
	01836742.tif
	01836743.tif
	01836744.tif
	01836745.tif
	01836746.tif
	01836747.tif
	01836748.tif
	01836749.tif
	01836750.tif
	01836751.tif
	01836752.tif
	01836753.tif
	01836754.tif
	01836755.tif
	01836756.tif
	01836757.tif
	01836758.tif
	01836759.tif
	01836760.tif
	01836761.tif
	01836762.tif
	01836763.tif
	01836764.tif
	01836765.tif
	01836766.tif
	01836767.tif
	01836768.tif
	01836769.tif
	01836770.tif
	01836771.tif
	01836772.tif
	01836773.tif
	01836774.tif
	01836775.tif
	01836776.tif
	01836777.tif
	01836778.tif
	01836779.tif
	01836780.tif
	01836781.tif
	01836782.tif
	01836783.tif
	01836784.tif
	01836785.tif
	01836786.tif
	01836787.tif
	01836788.tif
	01836789.tif
	01836790.tif
	01836791.tif
	01836792.tif
	01836793.tif
	01836794.tif
	01836795.tif
	01836796.tif
	01836797.tif
	01836798.tif
	01836799.tif
	01836800.tif
	01836801.tif
	01836802.tif
	01836803.tif
	01836804.tif
	01836805.tif
	01836806.tif
	01836807.tif
	01836808.tif
	01836809.tif
	01836810.tif
	01836811.tif
	01836812.tif
	01836813.tif
	01836814.tif
	01836815.tif
	01836816.tif
	01836817.tif
	01836818.tif
	01836819.tif
	01836820.tif
	01836821.tif
	01836822.tif
	01836823.tif
	01836824.tif
	01836825.tif
	01836826.tif
	01836827.tif
	01836828.tif
	01836829.tif
	01836830.tif
	01836831.tif
	01836832.tif
	01836833.tif
	01836834.tif
	01836835.tif
	01836836.tif
	01836837.tif
	01836838.tif
	01836839.tif
	01836840.tif
	01836841.tif
	01836842.tif
	01836843.tif
	01836844.tif
	01836845.tif
	01836846.tif
	01836847.tif
	01836848.tif
	01836849.tif
	01836850.tif
	01836851.tif
	01836852.tif
	01836853.tif
	01836854.tif
	01836855.tif
	01836856.tif
	01836857.tif
	01836858.tif
	01836859.tif
	01836860.tif
	01836861.tif
	01836862.tif
	01836863.tif
	01836864.tif
	01836865.tif
	01836866.tif
	01836867.tif
	01836868.tif
	01836869.tif
	01836870.tif
	01836871.tif
	01836872.tif
	01836873.tif
	01836874.tif
	01836875.tif
	01836876.tif
	01836877.tif
	01836878.tif
	01836879.tif
	01836880.tif
	01836881.tif
	01836882.tif
	01836883.tif
	01836884.tif
	01836885.tif
	01836886.tif
	01836887.tif
	01836888.tif
	01836889.tif
	01836890.tif
	01836891.tif
	01836892.tif
	01836893.tif
	01836894.tif
	01836895.tif
	01836896.tif
	01836897.tif
	01836898.tif
	01836899.tif
	01836900.tif
	01836901.tif
	01836902.tif
	01836903.tif
	01836904.tif
	01836905.tif
	01836906.tif
	01836907.tif
	01836908.tif
	01836909.tif
	01836910.tif
	01836911.tif
	01836912.tif
	01836913.tif
	01836914.tif
	01836915.tif
	01836916.tif
	01836917.tif
	01836918.tif
	01836919.tif
	01836920.tif
	01836921.tif
	01836922.tif
	01836923.tif
	01836924.tif
	01836925.tif
	01836926.tif
	01836927.tif
	01836928.tif
	01836929.tif
	01836930.tif
	01836931.tif
	01836932.tif
	01836933.tif
	01836934.tif
	01836935.tif
	01836936.tif
	01836937.tif
	01836938.tif
	01836939.tif
	01836940.tif
	01836941.tif
	01836942.tif

